Skip to main content
Log in

Plant functional traits with particular reference to tropical deciduous forests: A review

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aarea :

area-based leaf maximum photosynthetic rate

Amass :

mass-based leaf maximum photosynthetic rate

ANPP:

above ground net primary production

ATP:

adenosine triphosphate

Camass :

mass-based calcium concentration

CC:

leaf construction cost

Chl:

chlorophyll concentration

Cmass :

mass-based carbon concentration

DBH:

diameter at breast height

E:

leaf transpiration rate

FT:

functional trait

gc :

leaf stomatal conductance, Kmass, mass-based potassium concentration

LA:

leaf area

LAI:

leaf area index

LDMC:

leaf dry matter content

LL:

leaf life-span

LMA:

leaf mass per area

LNC:

leaf nitrogen concentration

LPC:

leaf phosphorus concentration

LSCmax :

maximum leaf specific hydraulic conductivity

LWC:

leaf water content

Namass :

mass-based sodium concentration

Nmass :

mass-based nitrogen concentration

PFT:

plant functional type

Pmass :

mass-based phosphorus concentration

Rdarea :

area-based dark respiration rate

Rdmass :

mass-based dark respiration rate

Rdmax :

maximum rate of dark respiration

SLA:

specific leaf area

SSD:

specific stem density

TDF:

tropical deciduous forest

TDMC:

twig dry matter content

WUEi:

intrinsic water use efficiency

References

  • Ackerly DD and Cornwell WK 2007 A trait-based approach to community assembly: partitioning of species trait values into within- and among- community components. Ecol. Lett. 10 135–145

    Article  PubMed  CAS  Google Scholar 

  • Aerts R and Chapin FS 2000 The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30 1–67

    Article  CAS  Google Scholar 

  • Arnold AE and Asquith NM 2002 Herbivory in a fragmented tropical forest: patterns from islands at Lago Gatún, Panama. Biodiversity. Conserv. 11 1663–1680

    Google Scholar 

  • Aubin I, Ouellette M-H, Legendre P, Messier C and Bouchard A 2009 Comparison of two plant functional approaches to evaluate natural restoration along an old-field–deciduous forest chronosequence. J. Veg. Sci. 20 185–198

    Article  Google Scholar 

  • Baker TR, Burslem DFRP and Swaine MD 2003a Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest. J. Trop. Ecol. 19 109–125

    Article  Google Scholar 

  • Baker TR, Phillips OL, Laurance WF, Pitman NCA, Almeida S, Arroyo L, DiFiore A, Erwin T, et al. 2008 Do species traits determine patterns of wood production in Amazonian forests?Biogeosci. Disc. 5 3593–3621

    Article  Google Scholar 

  • Baker TR, Swaine MD and Burslem DFRP 2003b Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspect. Plant. Ecol. Evol. Syst. 6 37– 49

    Article  Google Scholar 

  • Baruch Z and Goldstein G 1999 Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121 183–192

    Article  Google Scholar 

  • Bertiller MB, Mazzarino MJ, Carrera AL, Diehl P, Satti P, Gobbi M and Sain CL 2006 Leaf strategies and soil N across a regional humidity gradient in Patagonia. Oecologia 148 612–624

    Article  PubMed  Google Scholar 

  • Bhaskar R and Ackerly DD 2006 Ecological relevance of minimum seasonal water potentials. Physiol. Plantarium 127 353–359

    Article  CAS  Google Scholar 

  • Bohlman SA 2010 Landscape patterns and environmental controls of deciduousness in forests of central Panama. Global Ecol. Biogeogr. 19 376–385

    Article  Google Scholar 

  • Borchert R 1994 Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75 1437 – 1449

    Article  Google Scholar 

  • Borchert R 2000 Organismic and environmental controls of bud growth in tropical trees; in Dormancy in plants: From whole plant behavior to cellular control (eds) JD Viemont and J Crabbe (Wallingford: CAB International) pp 87–107

    Chapter  Google Scholar 

  • Box EO 1981 Macroclimate and plant forms: An introduction to predictive modeling in phytogeography (The Hague, NL: Junk)

    Google Scholar 

  • Brenes-Arguedas T, Coley PD and Kursar TA 2009 Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90 1751–1761

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA and Martínez-Ramos M 2010 Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecologia 163 485–496

    Article  PubMed  Google Scholar 

  • Brodribb TJ and Holbrook NM 2003a Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol. 158 295–303

    Article  Google Scholar 

  • Brodribb TJ and Holbrook NM 2003b Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol. 132 2166–2173

    Article  PubMed  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM, Edwards EJ and Gutiérrez MV 2003 Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26 443–450

    Article  Google Scholar 

  • Bullock S 1997 An exploration of signalling behaviour by both analytic and simulation means for both discrete and continuous models; in Proceedings of the Fourth European Conference on Artificial Life (eds) P Husbands and I Harvey (Cambridge, MA: The MIT Press) pp 454–463

    Google Scholar 

  • Campo J and Dirzo R 2003 Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico. J. Trop. Ecol. 19 525–530

    Article  Google Scholar 

  • Centritto M, Loreto R, Massacci A, Pietrini R, Villani MC and Zacchine M 2000 Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecol. Res. 15 385–392

    Article  Google Scholar 

  • Champion HG and Seth SK 1968 General silviculture for India (Delhi: Publication Division, Government of India)

    Google Scholar 

  • Chapin FS 1980 The mineral nutrition of wild plants. Annu. Rev. Plant. Physiol. 11 233–260

    CAS  Google Scholar 

  • Chapin F III, Zavelta E, Eviner V, Naylor R, Vitousek P, Reynolds H, Hooper D, Lavorel S, et al. 2000 Consequences of changing biodiversity. Nature (London) 405 234–242

    Article  CAS  Google Scholar 

  • Chaturvedi RK, Raghubanshi AS and Singh JS 2011 Leaf attributes and tree growth in a tropical dry forest. J. Veg. Sci. 22 917–931

    Article  Google Scholar 

  • Chaturvedi RK, Raghubanshi AS and Singh JS 2010 Non-destructive estimation of tree biomass by using wood specific gravity in the estimator. Natl. Acad. Sci. Lett. 33 133–138

    Google Scholar 

  • Coley PD 1998 Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Change 39 455–472

    Article  Google Scholar 

  • Coley PD and Barone JA 1996 Herbivory and plant defenses in tropical forest. Annu. Rev. Ecol. Syst. 27 305 – 335

    Article  Google Scholar 

  • Coley PD, Bryant JP and Chapin FS 1985 Resource availability and plant herbivore defence. Science 230 895–899

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen JHC and Thompson K 1997 Functional leaf attributes predicts litter decomposition rate in herbaceous plants. New Phytol. 135 109–114

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, et al. 2003 A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51 335–380

    Article  Google Scholar 

  • Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F and Cerabolini B 1999 Leaf structure and defence control litter decomposition rate across species and life forms in regional flora on two continents. New Phytol. 143 191–200

    Article  Google Scholar 

  • Craine JM, Wedin DA and Reich PB 2001 The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply, and plant diversity. Global Change Biol. 7 947–953

    Article  Google Scholar 

  • Cunningham SA, Summerhayes B and Westoby M 1999 Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69 569–588

    Article  Google Scholar 

  • de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, et al. 2010 Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conserv. 19 2873–2893

    Article  Google Scholar 

  • de Deyn GB, Cornelissen JHC and Bardgett RD 2008 Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11 516–531

    Article  PubMed  Google Scholar 

  • Devall MS, Parresol BR and Wright SJ 1995 Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in central Panama. IAWA J. 16 411–424

    Google Scholar 

  • Díaz S and Cabido M 1997 Plant functional types and ecosystem function in relation to global change. J .Veg. Sci. 8 463 – 474

    Google Scholar 

  • Díaz S and Cabido M 2001 Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16 646–655

    Article  Google Scholar 

  • Díaz S, Cabido M, Zak M, Martinez Carretero E and Aranibar J 1999 Plant functional traits, ecosystem structure and land-use history along a climate gradient in central-western Argentina. J. Veg. Sci. 10 651–660

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, et al. 2004 The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15 295–304

    Google Scholar 

  • Díaz S, McIntyre S, Lavorel S and Pausas JG 2002 Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytol. 154 7–9

    Article  Google Scholar 

  • Díaz S, Noy-Meir I and Cabido M 2001 Can grazing response of herbaceous plants be predicted from simple vegetative traits? J. Appl. Ecol. 38 497–508

    Google Scholar 

  • Díaz S, Symstad AJ, Chapin FS, Wardle DA and Huenneke LF 2003 Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18 140–46

    Article  Google Scholar 

  • Dubey P, Raghubanshi AS and Singh JS 2011 Intra-seasonal variation and relationship among leaf traits of different forest herbs in a dry tropical environment. Curr. Sci. 100 69–76

    Google Scholar 

  • Duru M, Khaled RAH, Ducourtieux C, Theau JP, de Quadros FLF and Cruz P 2009 Do plant functional types based on leaf dry matter content allow characterizing native grass species and grasslands for herbage growth pattern? Plant Ecol. 201 421–433

    Article  Google Scholar 

  • Eamus D and Prichard H 1998 A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18 537–545

    PubMed  Google Scholar 

  • Eamus D and Prior L 2001 Ecophysiology of trees of seasonally dry tropics: comparisons anong phonologies. Adv. Ecol. Res. 32 113–197

    Article  CAS  Google Scholar 

  • Eamus D 1999 Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol. Evol. 14 11–16

    Article  PubMed  Google Scholar 

  • Enoch HZ and Hurd RG 1979 The effect of elevated CO2 concentrations in the atmosphere on plant transpiration and water use efficiency. A study with potted carnation plants. Int. J. Biometeorol. 23 343–351

    Article  CAS  Google Scholar 

  • Eviner VT and Chapin FS III 2003 Functionalmatrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu. Rev. Ecol. Evol. Syst. 34 455–485

    Article  Google Scholar 

  • Fallas-Cedeño L, Holbrook NM, Rocha OJ, Vásquez N and Gutiérrez-Soto MV 2010 Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42 104–111

    Article  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P and Coradin VTR 2005 Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19 326–335

    Article  Google Scholar 

  • Freitas ADS, Sampaio EVSB, Santos CERS and Fernandes AR 2010 Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J. Arid. Environ. 74 344–349

    Article  Google Scholar 

  • Garnier E 1991 Resource capture, biomass allocation and growth in herbaceous plants. Trends. Ecol. Evol. 6 126–131

    Article  PubMed  CAS  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, et al. 2007 Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99 967–985

    Article  PubMed  Google Scholar 

  • Garnier E, Shipley B, Roumet C and Laurent G 2001 A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 15 688–695

    Article  Google Scholar 

  • Geber MA and Griffen LR 2003 Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164 21–42

    Article  Google Scholar 

  • Gerhardt K 1993 Tree seedling development in tropical dry abandoned pasture and secondary forest in Costa Rica. J. Veg. Sci. 4 95–102

    Article  Google Scholar 

  • Geßler A, Duarte HM, Franco AC, Lüttge U, de Mattos EA, Nahm M, Rodrigues PJFP, Scarano FR and Rennenberg H 2005 Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE—Brazil III. Three legume trees in a semi-deciduous dry forest. Trees 19 523–530

    Article  Google Scholar 

  • Gitay H and Noble IR 1997 What are functional types and how should we seek them? in Plant functional types: Their relevance to ecosystem properties and global change (eds) TM Smith, HH Shugart and FI Woodward (Cambridge: Cambridge University Press) pp 3–19

    Google Scholar 

  • Gitay H, Noble IR and Connell JH 1999 Deriving functional types for rainforest trees. J. Veg. Sci. 10 641–650

    Article  Google Scholar 

  • Gotsch SG, Geiger EL, Franco AC, Goldstein G, Meinzer FC and Hoffmann WA 2010 Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163 291–301

    Google Scholar 

  • Griffin KL 1994 Calorimetric estimates of construction cost and their use in ecological studies. Funct. Ecol. 8 551–562

    Article  Google Scholar 

  • Grime JP 1997 Biodiversity and ecosystem function, the debate deepens. Science 277 1260–1261

    Article  CAS  Google Scholar 

  • Grime JP, Hodgson JG and Hunt R 1988 Comparative plant ecology. A functional approach to common British species (Cambridge: Cambridge University Press)

    Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Riorison IH, Hendry GAF, Ashenden TW, et al. 1997 Integrated screening validates primary axes of specialization in plants. Oikos 79 259–281

    Article  Google Scholar 

  • Gritti ES, Cassignat C, Flores O, Bonnefille R, Chalié F, Guiot J and Jolly D 2010 Simulated effects of a seasonal precipitation change on thevegetation in tropical Africa. Clim. Past. 6 169–178

    Article  Google Scholar 

  • Hallik L, Kull O, Niinemets Ü and Aan A 2009 Contrasting correlation networks between leaf structure, nitrogen and chlorophyll in herbaceous and woody canopies. Basic Appl. Ecol. 10 309–318

    Article  CAS  Google Scholar 

  • Hayden B, Greene DF and Quesada M 2010 A field experiment to determine the effect of dry-season precipitation on annual ring formation and leaf phenology in a seasonally dry tropical forest. J. Trop. Ecol. 26 237–242

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL and Barron AR 2009 The Nitrogen Paradox in Tropical Forest Ecosystems. Annu. Rev. Ecol. Evol. Syst. 40 613–35

    Article  Google Scholar 

  • Hillebrand H and Matthiessen B 2009 Biodiversity in a complex world: Consolidation and progress in functional biodiversity research. Ecol. Let. 12 1–15

    Article  Google Scholar 

  • Högberg P 1992 Root symbioses of trees in African dry tropical forests. J. Veg. Sci. 3 393–400

    Article  Google Scholar 

  • Högberg P and Alexander IJ 1995 Roles of root symbioses in African woodland and forest: evidence from 15N abundance and foliar analysis. J. Ecol. 83 217–224

    Article  Google Scholar 

  • Holdridge LR 1967 Life zone ecology (San Jose, Costa Rica: Tropical Science Centre,)

    Google Scholar 

  • Hoorens B, Stroetenga M and Aerts R 2010 Litter Mixture Interactions at the level of plant functional types are additive. Ecosystems 13 90–98

    Article  Google Scholar 

  • Horton JL, Kolb TE and Hart SC 2001 Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species. Tree Physiol. 21 233–241

    Article  PubMed  CAS  Google Scholar 

  • Huante P, Rincón E and Acosta I 1995 Nutrient availability and growth rate of 34 woody species from a tropical deciduous forest in Mexico. Funct. Ecol. 9 849–858

    Article  Google Scholar 

  • Ishida A, Diloksumpun S, Ladpala P, Staporn D, Panuthai S, Gamo M, Yazaki K, Ishizuka M and Puangchit L 2006 Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiol. 26 643–656

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH 1970 Herbivores and the number of tree species in tropical forests. Am. Nat. 104 501–528

    Article  Google Scholar 

  • Jha CS and Singh JS 1990 Compositions and dynamics of dry tropical forest in relation to soil texture. J. Veg. Sci. 1 609–614

    Article  Google Scholar 

  • Jurik TW 1986 Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. Am. J. Bot. 73 1083–1092

    Article  Google Scholar 

  • Keddy PA 1992 Assembly and response rules: two goals for predictive ecology. J. Veg. Sci. 3 157–64

    Article  Google Scholar 

  • Khurana E, Sagar R and Singh JS 2006 Seed size: a key trait determining species distribution and diversity of dry tropical forest in northern India. Acta. Oecol. 29 196–204

    Article  Google Scholar 

  • Kindu M, Glatzel G, Tadesse Y and Yosef A 2006 Tree species screened on Nitosols of central Ethiopia: biomass production, nutrient contents and effect on soil nitrogen. J. Trop. For. Sci. 18 173–180

    Google Scholar 

  • Kitajima K, Mulkey SS and Wright SJ 1997 Seasonal leaf phenotypes in the canopy of a tropical dry forest: photosynthetic characteristics and associated traits. Oecologia 109 490–498

    Article  Google Scholar 

  • Kooyman RM and Westoby M 2009 Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species. Ann. Bot. 104 987–993

    Article  PubMed  Google Scholar 

  • Körner C, Bannister P and Mark AF 1986 Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69 577–588

    Article  Google Scholar 

  • Kraft NJB, Valencia R and Ackerly DD 2008 Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322 580–582

    Article  PubMed  CAS  Google Scholar 

  • Kubiske ME and Abrams MD 1993 Stomatal and nonstomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years. Plant Cell Environ. 16 1123–1129

    Article  Google Scholar 

  • Kull O 2002 Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133 267–279

    Article  Google Scholar 

  • Lal CB, Annapurna C, Raghubanshi AS and Singh JS 2001 Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Can. J. Bot. 79 1066–1075

    CAS  Google Scholar 

  • Lambers H, Chapin FS III and Pons TL 1998 Plant Physiological Ecology (New York: Springer-Verlag)

    Google Scholar 

  • Lambers H and Poorter H 1992 Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23 188–261

    Google Scholar 

  • Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Roumet C and Urcelay C 2007 Plant functional types: are we getting any closer to the Holy Grail? in Terrestrial ecosystems in a changing world (eds) Canadell JG, Pitelka LF and Pataki D (Berlin Heidelberg: Springer-Verlag) pp 149–165

    Chapter  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J and Forbes TDA 1997 Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12 474–478

    Article  PubMed  CAS  Google Scholar 

  • Leith JH, Reynolds JP and Rogers HH 1986 Estimation of leaf area of soybeans grown under elevated carbon dioxide levels. Field Crops Res. 13 193–203

    Article  Google Scholar 

  • Li FL, Bao WK and Wu N 2009 Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforest Syst. 77 193–201

    Article  Google Scholar 

  • Loneragan JF, Snowball K and Robson AD 1976 Remobilization of nutrients and its significance in plant nutrition, Transport and transfer processes in plants (eds) IF Wardlaw and JB Pasioura (New York: Academic Press) pp 463–469

    Google Scholar 

  • Loranger J and Shipley B 2010 Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88 30–38

    Article  Google Scholar 

  • Mac Gillivray CW and Grime JP and the integrated screening programme (ISP) team 1995 Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct. Ecol. 9 640–649

    Article  Google Scholar 

  • Manlay RJ, Kairé M, Masse D, Chotte J-L, Ciornei G and Floret C 2002 Carbon, nitrogen and phosphorus allocation in agro-ecosystems of a West African savanna: I. The plant component under semi-permanent cultivation. Agri., Ecosyst. Environ. 88 215–232

    Article  CAS  Google Scholar 

  • Marino G, Aqil M and Shipley B 2010 The leaf economics spectrum and the prediction of photosynthetic light–response curves. Funct. Ecol. 24 263–272

    Article  Google Scholar 

  • Markesteijn L, Iraipi J, Bongers F and Poorter L 2010 Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J. Trop. Ecol. 26 497–508

    Article  Google Scholar 

  • Markesteijn L, Poorter L, Bongers F, Paz H and Sack L 2011 Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol. 191 480–495

    Article  PubMed  Google Scholar 

  • Markesteijn L, Poorter L and Bongers F 2007 Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94 515–525

    Article  PubMed  Google Scholar 

  • McIntyre S, Diaz S, Lavorel S and Cramer W 1999 Plant functional types and disturbance dynamics – Introduction. J. Veg. Sci. 10 604–608

    Google Scholar 

  • McLaren JR and Turkington R 2010 Ecosystem properties determined by plant functional group identity. J. Ecol. 98 459–469

    Article  Google Scholar 

  • Medina E and Francisco M 1994 Photosynthesis and water relations of savanna tree species differing in leaf phenology. Tree Physiol. 14 1367–1381

    PubMed  Google Scholar 

  • Meers TL, Bell TL, Enright NJ and Kasel S 2008 Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19 515–524

    Article  Google Scholar 

  • Miller HG, Cooper JM and Miller JD 1976 Effect of nutrients in litter fall and crown leaching in a stand of Corsican pine. J. Appl. Ecol. 13 233–248

    Article  CAS  Google Scholar 

  • Miller PC and Stoner WA 1979 Canopy structure and environmental interactions; in Topics in plant population biology (eds) OT Solbrig, S Jain, GB Johnson and PH Raven (New York: Colombia University Press) pp 428–458

    Google Scholar 

  • MoEF 1999 National forestry action plan (New Delhi: Ministry of Environment and Forests, Government of India,)

    Google Scholar 

  • Mooney HA, Bullock SH and Medina E 1995 Introduction; in Seasonally dry tropical forests (eds) SH Bullock, HA Mooney and E Medina (Cambridge: Cambridge University Press) pp 146–194

    Google Scholar 

  • Mooney HA 2010 The ecosystem-service chain and the biological diversity crisis. Phil. Trans. R. Soc. B. 365 31–39

    Article  PubMed  Google Scholar 

  • Mooney HA, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R and Yahara T 2009 Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1 46–54

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH and Mouillot D 2010 Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24 867–876

    Google Scholar 

  • Murali 1997 Patterns of seed size, germination and seed viability of tropical tree species in southern India. Biotropica 29 271 –279

    Article  Google Scholar 

  • Murphy PG and Lugo AE 1986 Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17 67–88

    Article  Google Scholar 

  • Namirembe S, Brook RM and Ong CK 2008 Manipulating phenology and water relations in Senna spectabilis in a water limited environment in Kenya. Agrofor. Syst. 75 197–210

    Article  Google Scholar 

  • Negi JDS, Manhas RK and Chauhan PS 2003 Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr. Sci. 85 1528–1531

    CAS  Google Scholar 

  • Niinemets Ü 1999 Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144 35–47

    Article  Google Scholar 

  • Niinemets Ü and Tenhunen JD 1997 A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20 845–866

    Article  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J and Warren CR 2009 Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60 2249–2270

    Article  PubMed  CAS  Google Scholar 

  • Noble IR and Gitay H 1996 A functional classification for predicting the dynamics of landscapes. J. Veg. Sci. 7 329–336

    Article  Google Scholar 

  • Olivares E and Medina E 1992 Water and nutrient relations of woody perennials from tropical dry forests. J. Veg. Sci. 3 383–392

    Article  Google Scholar 

  • Opler PA, Frankie GW and Baker HG 1980 Comparative phonological studies of Treelet and shrub species in tropical wet and dry forests in the woodlands of Costa Rica. J. Ecol. 68 167–188

    Article  Google Scholar 

  • Pakeman RJ 2004 Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J. Ecol. 92 893–905

    Article  Google Scholar 

  • Pandey SK, Singh H and Singh JS 2009 Species and site effects on leaf traits of woody vegetation in a dry tropical environment. Curr. Sci. 96 1109–1114

    CAS  Google Scholar 

  • Pausas JG and Lavorel S 2003 A hierarchical deductive approach for functional types in disturbed ecosystems. J. Veg. Sci. 14 409–416

    Article  Google Scholar 

  • Pennington T, Lewis G and Ratter J 2006 Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation (Florida: CRC Press)

    Book  Google Scholar 

  • Poorter H and Bergkotte M 1992 Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15 221–229

    Article  CAS  Google Scholar 

  • Poorter H and Garnier E 1999 Ecological significance of inherent variation in relative growth rate and its components; in Handbook of Functional Plant Ecology (eds) FI Pugnaire and F Valladares (New York: Marcel Dekker) pp 81–120

    Google Scholar 

  • Portillo-Quintero CA and Sánchez-Azofeifa GA 2010 Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143 144–155

    Article  Google Scholar 

  • Posada JM, Lechowicz MJ and Kitajima K 2009 Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Ann. Bot. 103 795–805

    Article  PubMed  CAS  Google Scholar 

  • Powers JS and Tiffin P 2010 Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24 927–936

    Article  Google Scholar 

  • Preston KA, Cornwell WK and DeNoyer JL 2006 Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170 807–818

    Article  PubMed  Google Scholar 

  • Prior LD, Bowman DMJS and Eamus D 2004 Seasonal differences in leaf attributes in Australian tropical tree species: family and habit comparisons. Funct. Ecol. 18 707–718

    Article  Google Scholar 

  • Prior LD, Eamus D and Bowman DMJS 2003 Leaf attributes in the seasonally dry tropics: a comparison of four habitats in northern Australia. Funct. Ecol. 17 504–515

    Article  Google Scholar 

  • Raherison SM and Grouzis M 2005 Plant biomass, nutrient concentration and nutrient storage in a tropical dry forest in the south–west of Madagascar. Plant Ecol. 180 33–45

    Article  Google Scholar 

  • Raunkiaer C 1907 Planterigets livsformer og deres Betydning for Geographyrafien (Copenhagen, Denmark: Munksgaard)

    Google Scholar 

  • Reich PB, Ellsworth DS and Uhl C 1995 Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Funct. Ecol. 9 65–76

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC and Bowman WD 1999 Generality of leaf trait relationships: a test across six biomes. Ecology 80 1955–1969

    Article  Google Scholar 

  • Reich PB, Walters MB and Ellsworth DS 1992 Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62 365–392

    Article  Google Scholar 

  • Reich PB, Walters MB and Ellsworth DS 1997 From tropics to tundra: global convergence in plant functioning. Proc. Nat. Acad. Sci. USA 94 13730–13734

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JS, Volin JC, Gresham C and Bowman WD 1998 Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114 471–482

    Article  Google Scholar 

  • Rockwood LL 1973 The effect of defoliation on seed production of six Costa Rican tree species. Ecology 54 1363 – 1369

    Article  Google Scholar 

  • Roderick ML, Berry SL and Noble IR 1999 The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143 63–72

    Article  Google Scholar 

  • Rozendaal DM A, Hurtado VH and Poorter L 2006 Plasticity in leaf traits of 38 tropical tree species inresponse to light; relationships with light demand and adult stature. Funct. Ecol. 20 207–216

    Article  Google Scholar 

  • Ryel RJ, Ivans CY, Peek MS, and Leffler AJ 2008 Functional differences in soil water pools: a new perspective on plant water use in water-limited ecosystems. Prog. Bot. 69 397–422

    Article  Google Scholar 

  • Ryser P and Urbas P 2000 Ecological significance of leaf life span among Central European grass species. Oikos 91 41–50

    Article  Google Scholar 

  • Sagar R and Singh JS 2003 Predominant phenotypic traits of disturbed tropical dry deciduous forests of northern India. Comm. Ecol. 4 63–71

    Google Scholar 

  • Saha S and Howe HF 2003 Species composition and fire in a dry deciduous forest. Ecology 84 3118–3123

    Article  Google Scholar 

  • Saldaña-Acosta A, Meave JA Paz H, Sánchez-Velásquez LR, Villaseñor and Martínez-Ramos M 2008 Variation of functional traits in trees from a biogeographically complex Mexican cloud forest. Acta Oecologia 34 111–121

    Article  Google Scholar 

  • Sánchez-Azofeifa GA, Quesada M, Rodr´ıguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent EL, Calvo-Alvarado JC, Kalacska MER, Fajardo L, Gamon JA and Cuevas-Reyes P 2005 Research priorities for Neotropical dry forests. Biotropica 37 477–485

    Google Scholar 

  • Sánchez-Coronado ME, Coates R, Castro-Colina L, Gamboa de Buen L, Paez-Valencia J, Barradas VL, Huante P and Orozco-Segovia A 2007 Improving seed germination and seedling growth of Omphalea oleifera (Euphorbiaceae) for restoration projects in tropical rain forests. For. Ecol. Manage. 243 144–155

    Article  Google Scholar 

  • Santiago LS 2003 Leaf traits of canopy trees on a precipitation gradient in Panama: Integrating plant physiological ecology and ecosystem science, PhD dissertation, University of Florida

  • Santiago LS, Kitajima K, Wright SJ and Mulkey SS 2004 Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139 495–502

    Article  PubMed  Google Scholar 

  • Schulze ED and Mooney HA (eds) 1994 Biodiversity and ecosystem function. Ecological studies, Vol 99 (Springer, Berlin)

    Google Scholar 

  • Schulze ED, Gebauer G, Ziegler H and Lange OL 1991 Estimates of nitrogen fixation by trees on an aridity gradient. Oecologia 88 451–455

    Article  Google Scholar 

  • Schwinning S 2010 The ecohydrology of roots in rocks. Ecohydrology 3 238–45

    Google Scholar 

  • Seghieri J, Vescovo A, Padel K, Soubie R, Arjounin M, Boulain N, de Rosnay P, Galle S, Gosset M, Mouctar AH, Peugeot C and Timouk F 2009 Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. J. Hydrol. 375 78–89

    Article  Google Scholar 

  • Semenova GV and van der Maarel E 2000 Plant functional types – a strategic perspective. J. Veg. Sci. 11 917–922

    Article  Google Scholar 

  • Singh JS and Singh VK 1992 Phenology of seasonally dry tropical forest. Curr. Sci. 63 684–689

    Google Scholar 

  • Singh L and Singh JS 1991 Storage and flux of nutrients in a dry tropical forest in India. Ann. Bot. 68 275–284

    CAS  Google Scholar 

  • Sobrado MA 1991 Cost-benefit relationships in deciduous and evergreen leaves of tropical dry forest species. Funct. Ecol. 5 608–616

    Article  Google Scholar 

  • Sperry JS 2003 Evolution of water transport and xylem structure. Int. J. Plant. Sci. 164 S115-S127

    Article  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS III, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST and Navas M-L 2008 Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14 1125–1140

    Article  Google Scholar 

  • Suding KN, Miller AE, Bechtold H and Bowman WD 2006 The consequence of species loss on ecosystem nitrogen cycling depends on community compensation. Oecologia 149 141–149

    Article  PubMed  Google Scholar 

  • Swaine MD, Lieberman D and Putz FE 1987 The dynamics of tree populations in tropical forest: a review. J. Trop. Ecol. 3 359–366

    Article  Google Scholar 

  • Thompson K, Bakker J and Bekker RM 1997 The soil seed banks of north west Europe: Methodology, density and longevity (Cambridge: Cambridge University Press)

    Google Scholar 

  • Tosi Jr, JA and Voertman RF 1964 Some environmental factors in the economic development of the tropics. Econo. Geograph. 40 189–205

    Article  Google Scholar 

  • Turner J and Olson PR 1976 Nitrogen relations in a Douglas-fir plantation. Ann. Bot. 40 1185–1193

    CAS  Google Scholar 

  • Urbeita IR, Pérez-Ramos IM, Zavala MA, Marañón T and Kobe RK 2008 Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean Oak species. Can. J. For. Res. 38 2382–2393.

    Article  Google Scholar 

  • Vaieretti MV, Díaz S, Vile D and Garnier E 2007 Two measurement methods of leaf dry matter content produce similar results in a broad range of species. Ann. Bot. 99 955–958

    Article  PubMed  Google Scholar 

  • Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K and Hodgson JG 2002 Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 154 147–157

    Article  Google Scholar 

  • Villar R and Merino J 2001 Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol. 151 213–126

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I and Garnier E 2007 Let the concept of trait be functional! Oikos 116 882–892

    Article  Google Scholar 

  • Von Willert DJ, Eller BM, Werger MJ and Brinckmann E 1990 Desert succunents and their life strategies. Vegetatio 90 133–143

    Article  Google Scholar 

  • Von Willert DJ, Eller BM, Werger MJA, Brinckmann E and Ehlenfeldt HD 1992 Life strategies of succulents in deserts- with special reference to the Namib Desert (Cambridge: Cambridge University Press)

    Google Scholar 

  • Walker B, Kinzig A and Langridge J 1999 Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2 95–113

    Article  Google Scholar 

  • Walter H 1979 Vegetation of the earth and ecological systems of the geo-biosphere (New York: Springer-Verlag)

    Book  Google Scholar 

  • Wardle DA, Barker GM, Bonner KI and Nicholson KS 1998 Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J. Ecol. 86 405–420

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E and Eriksson O 1999 Challenging Theophrastus: a common core list of plant traits for functional ecology. J. Veg. Sci. 10 609–20

    Article  Google Scholar 

  • Westoby M and Wright IJ 2006 Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21 261–268

    Article  PubMed  Google Scholar 

  • Westoby M 1998 A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199 213–227

    Google Scholar 

  • Whigham DF, Zugasty Towle P, Cabrera Cano E, Neill JO and Ley E 1990 The effect of annual variation in precipitation on growth and litter production in a tropical dry forest in the Yucatan of Mexico. Trop. Ecol. 31 23–34

    Google Scholar 

  • White F 1983 The Vegetation of Africa: A descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa (Natural Resources Research, 20. UNESCO, Paris)

  • Wiemann MC and Williamson GB 1989 Wood Specific gravity gradients in tropical dry and Montane rain forest trees. Am. J. Bot. 76 924–928

    Article  Google Scholar 

  • Williams KF, Percival F, Merino J and Mooney HA 1987 Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ. 10 725–734

    Google Scholar 

  • Williams LE 1987 Growth of ‘Thompson Seedless’ grapevines: I. Leaf area development and dry weight distribution. J. Am. Soc. Hort. Sci. 112 325–330

    Google Scholar 

  • Wilson PJ, Thompson K and Hodgson JG 1999 Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 143 155–162

    Google Scholar 

  • Woodward FI 1987 Climate and plant distribution (Cambridge: Cambridge University Press)

    Google Scholar 

  • Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manríquez G, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, et al. 2007. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99 1003–1015

    Article  PubMed  Google Scholar 

  • Wright IJ, Pickup DSFM and Westoby M 2006 Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plantarium 127 445 – 456

    Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, et al. 2004a Assessing the generality of global leaf trait relationships. New Phytol. 166 485–496

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, et al. 2004b The world-wide leaf economics spectrum. Nature (London) 428 821–827

    Article  CAS  Google Scholar 

  • Yuan ZY, Li LH, Han LHXG, Chen SP, Wang ZW, Chen QS and Bai WM 2006 Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia 148 564–572

    Article  PubMed  Google Scholar 

  • Zhang YJ, Meinzer FC, Hao GY, Scholz FG, Bucci SJ, Takahashi FS, Villalobos-Vega R, Giraldo JP, Cao KF, Hoffmann WA and Goldstein G 2009 Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32 1456–1466

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Environment and Forests, India, for the financial support. JSS is supported under NASI Senior Scientist Scheme. The corresponding editor and the anonymous reviewers are thanked for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Chaturvedi.

Additional information

[Chaturvedi RK, Raghubanshi AS and Singh JS 2011 Plant functional traits with particular reference to tropical deciduous forests: A review. J. Biosci. 36 1–19] DOI 10.1007/s12038-011-9159-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, R.K., Raghubanshi, A.S. & Singh, J.S. Plant functional traits with particular reference to tropical deciduous forests: A review. J Biosci 36, 963–981 (2011). https://doi.org/10.1007/s12038-011-9159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9159-1

Keywords

Navigation