Skip to main content
Log in

Molecular mechanisms of canalization: Hsp90 and beyond

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The Hsp90 chaperone machine facilitates the maturation of a diverse set of ‘client’ proteins. Many of these Hsp90 clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the important role Hsp90 plays in organismal development and responses to the environment. Recent findings suggest a broader impact of the chaperone on phenotype: fully functional Hsp90 canalizes wild-type phenotypes by suppressing underlying genetic and epigenetic variation. This variation can be expressed upon challenging the Hsp90 machinery by environmental stress, genetic or pharmaceutical targeting of Hsp90. The existence of Hsp90-buffered genetic and epigenetic variation together with plausible release mechanisms has wide-ranging implication for phenotype and possibly evolutionary processes. Here, we discuss the role of Hsp90 in canalization and organismal plasticity, and highlight important questions for future experimental inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arias A M and Hayward P 2006 Filtering transcriptional noise during development: concepts and mechanisms; Nat. Rev. Genet. 7 34–44

    Article  PubMed  CAS  Google Scholar 

  • Baldwin I T 1998 Jasmonate-induced responses are costly but benefit plants under attack in native populations; Proc Natl. Acad. Sci. USA 95 8113–8118

    Article  PubMed  CAS  Google Scholar 

  • Bergman A and Siegal M L 2003 Evolutionary capacitance as a general feature of complex gene networks; Nature (London) 424 549–552

    Article  CAS  Google Scholar 

  • Cao D, Lin Y and Cheng C L 2000 Genetic interactions between the chlorate-resistant mutant cr 8 8 and the photomorphogenic mutants cop1 and hy5; Plant Cell 12 199–210

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Froehlich J E, Zhang H and Cheng C L 2003 The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90; Plant J. 33 107–118

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J and Fankhauser C 2004 Light signal transduction in higher plants; Annu. Rev. Genet. 38 87–117

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Schneeberger R G and Cullis C A 2005 A site-specific insertion sequence in flax genotrophs induced by environment; New Phytol. 167 171–180

    Article  PubMed  CAS  Google Scholar 

  • Citri A, Alroy I, Lavi S, Rubin C, Xu W, Grammatikakis N, Patterson C, Neckers L, Fry D W and Yarden Y 2002 Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy; EMBO J. 21 2407–2417

    Article  PubMed  CAS  Google Scholar 

  • Conover D O and Kynard B E 1981 Environmental Sex Determination: Interaction of Temperature and Genotype in a Fish; Science 213 577–579

    Article  Google Scholar 

  • Cowen L E and Lindquist S 2005 Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi; Science 309 2185–2189

    Article  PubMed  CAS  Google Scholar 

  • Cullis C A, Swami S and Song Y 1999 RAPD polymorphisms detected among the flax genotrophs; Plant Mol. Biol. 41 795–800

    Article  PubMed  CAS  Google Scholar 

  • Dickinson W J and Seger J 1999 Cause and effect in evolution; Nature (London) 399 30

    Article  CAS  Google Scholar 

  • Durrant A 1962 The environmental induction of heritable change in Linum; Heredity 17 27–61

    Google Scholar 

  • Fares M A, Ruiz-Gonzalez M X, Moya A, Elena S F and Barrio E 2002 Endosymbiotic bacteria: groEL buffers against deleterious mutations; Nature (London) 417 398

    Article  CAS  Google Scholar 

  • Gomes N C, Fagbola O, Costa R, Rumjanek N G, Buchner A, Mendona-Hagler L and Smalla K 2003 Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics; Appl. Environ. Microbiol. 69 3758–3766

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E and Shomron N 2006 Canalization of development by microRNAs; Nat. Genet. (38 Suppl.) S20–S24

  • Hubert D A, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K and Dangl J L 2003 Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein; EMBO J. 22 5679–5689

    Article  PubMed  CAS  Google Scholar 

  • Lehner B, Crombie C, Tischler J, Fortunato A and Fraser A G 2006 Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways; Nat. Genet. 38 896–903

    Article  PubMed  CAS  Google Scholar 

  • Lei E P and Corces V G 2006 RNA interference machinery influences the nuclear organization of a chromatin insulator; Nat. Genet. 38 936–941

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S and Dinesh-Kumar S P 2004 Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants; J. Biol. Chem. 279 2101–2108

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz M T, Peart J, Wu A J, Rathjen J P, Bendahmane A, Day L and Baulcombe D C 2003 High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance; EMBO J. 22 5690–5699

    Article  PubMed  CAS  Google Scholar 

  • Maloof J N, Borevitz J O, Dabi T, Lutes J, Nehring R B, Redfern J L, Trainer G T, Wilson J M, Asami T, Berry C C, Weigel D and Chory J 2001 Natural variation in light sensitivity of Arabidopsis; Nat. Genet. 29 441–446

    Article  PubMed  CAS  Google Scholar 

  • Mangan S and Alon U 2003 Structure and function of the feed-forward loop network motif; Proc. Natl. Acad. Sci. USA 100 11980–11985

    Article  PubMed  CAS  Google Scholar 

  • McLaren A 1999 Too late for the midwife toad: stress, variability and Hsp90; Trends Genet. 15 169–171

    Article  PubMed  CAS  Google Scholar 

  • Meiklejohn C D and Hartl D L 2002 A single mode of canalization; Trends Ecol. Evol. 17 468–473

    Article  Google Scholar 

  • Michalak P 2006 RNA world — the dark matter of evolutionary genomics; J. Evol. Biol. 19 1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Milton C C, Huynh B, Batterham P, Rutherford S L and Hoffmann A A 2003 Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of enetic canalization and developmental stability; Proc. Natl. Acad. Sci. USA 100 13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Milton C C, Ulane C M and Rutherford S 2006 Control of canalization and evolvability by hsp90; PLoS ONE 1 e75

    Article  PubMed  Google Scholar 

  • Nathan D F, Vos M H and Lindquist S 1997 In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone; Proc. Natl. Acad. Sci. USA 94 12949–12956

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K A, Wentzel E A, Zeller K I, Dang C V and Mendell J T 2005 c-Myc-regulated microRNAs modulate E2F1 expression; Nature (London) 435 839–843

    Article  CAS  Google Scholar 

  • Peng J C and Karpen G H 2007 H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability; Nat. Cell. Biol. 9 25–35

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Khursheed B, Garabedian M J, Fortin M G, Lindquist S and Yamamoto K R 1990 Reduced levels of hsp90 compromise steroid receptor action in vivo; Nature (London) 348 166–168

    Article  CAS  Google Scholar 

  • Queitsch C, Sangster T A and Lindquist S 2002 Hsp90 as a capacitor of phenotypic variation; Nature (London) 417 618–624

    Article  CAS  Google Scholar 

  • Raser J M and O’shea E K 2005 Noise in gene expression: origins, consequences, and control; Science 309 2010–2013

    Article  PubMed  CAS  Google Scholar 

  • Roberts S P and Feder M E 1999 Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster; Oecologia 121 323–329

    Article  Google Scholar 

  • Rutherford S L and Lindquist S 1998 Hsp90 as a capacitor for morphological evolution; Nature (London) 396 336–342

    Article  CAS  Google Scholar 

  • Sangster T A, Lindquist S and Queitsch C 2004 Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance; Bioessays 26 348–362

    Article  PubMed  CAS  Google Scholar 

  • Sangster T A and Queitsch C 2005 The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity; Curr. Opin. Plant. Biol. 8 86–92

    Article  PubMed  CAS  Google Scholar 

  • Schmitt J, Dudley S A and Pigliucci M 1999 Manipulative approaches to testing adaptive plasticity: Phytochrome-mediated shade-avoidance responses in plants; Am. Nat. 154 S43–S54

    Article  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D and Ruden D M 2003 Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution; Nat. Genet. 33 70–74

    Article  PubMed  CAS  Google Scholar 

  • Stark A, Brennecke J, Bushati N, Russell R B and Cohen S M 2005 Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution; Cell 123 1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y and Nijhout H F 2006 Evolution of a polyphenism by genetic accommodation; Science 311 650–652

    Article  PubMed  CAS  Google Scholar 

  • Turbyville T J, Wijeratne E M, Liu M X, Burns A M, Seliga C J, Luevano L A, David C L, Faeth S H, Whitesell L and Gunatilaka A A 2006 Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert; J. Nat. Prod. 69 178–184

    Article  PubMed  CAS  Google Scholar 

  • Waddington C H 1942 Canalization of development and the inheritance of acquired characters Nature (London) 150 563–565

    Google Scholar 

  • Waddington C H 1953 Genetic assimilation of an acquired character; Evolution 7 118–126

    Article  Google Scholar 

  • Waddington C H 1956 Genetic assimilation of the bithorax phenotype; Evolution 10 1–13

    Article  Google Scholar 

  • Wagner A 2000 Robustness against mutations in genetic networks of yeast; Nat. Genet. 24 355–361

    Article  PubMed  CAS  Google Scholar 

  • Wemer J D, Borevitz J O, Warthmann N, Trainer G T, Ecker J R, Chory J and Weigel D 2005 Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation; Proc. Natl. Acad. Sci. USA 102 2460–2465

    Article  Google Scholar 

  • Zhao R, Davey M, Hsu Y C, Kaplanek P, Tong A, Parsons A B, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A and Houry W A 2005 Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone; Cell 120 715–727

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Queitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salathia, N., Queitsch, C. Molecular mechanisms of canalization: Hsp90 and beyond. J Biosci 32, 457–463 (2007). https://doi.org/10.1007/s12038-007-0045-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0045-9

Keywords

Navigation