Skip to main content

Advertisement

Log in

Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host’s response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472. https://doi.org/10.1111/j.0013-9580.2005.66104.x

    Article  PubMed  Google Scholar 

  2. Thijs RD, Surges R, O'Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet (London, England) 393(10172):689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  3. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6):1069–1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x

    Article  CAS  PubMed  Google Scholar 

  4. Hakami T (2021) Efficacy and tolerability of antiseizure drugs. Ther Adv Neurol Disord 14:17562864211037430. https://doi.org/10.1177/17562864211037430

    Article  PubMed  PubMed Central  Google Scholar 

  5. Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72(3):606–638. https://doi.org/10.1124/pr.120.019539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perucca P, Gilliam FG (2012) Adverse effects of antiepileptic drugs. Lancet Neurol 11(9):792–802. https://doi.org/10.1016/S1474-4422(12)70153-9

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Li L, Butcher J, Stintzi A, Figeys D (2019) Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 7(1):154. https://doi.org/10.1186/s40168-019-0767-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372. https://doi.org/10.1038/nrmicro3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heinken A, Basile A, Hertel J, Thinnes C, Thiele I (2021) Genome-scale metabolic modeling of the human microbiome in the era of personalized medicine. Annu Rev Microbiol 75:199–222. https://doi.org/10.1146/annurev-micro-060221-012134

    Article  CAS  PubMed  Google Scholar 

  10. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  11. Wang H-X, Wang Y-P (2016) Gut microbiota-brain axis. Chin Med J (Engl) 129(19):2373–2380. https://doi.org/10.4103/0366-6999.190667

    Article  PubMed  Google Scholar 

  12. Chen Y, Xu J, Chen Y (2021) Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 13(6). https://doi.org/10.3390/nu13062099

  13. Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194. https://doi.org/10.1016/S1474-4422(19)30356-4

    Article  CAS  PubMed  Google Scholar 

  14. Socała K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, Poleszak E, Fichna J et al (2021) The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 172:105840. https://doi.org/10.1016/j.phrs.2021.105840

    Article  CAS  PubMed  Google Scholar 

  15. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173(7):1728–1741.e1713. https://doi.org/10.1016/j.cell.2018.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dahlin M, Prast-Nielsen S (2019) The gut microbiome and epilepsy. EBioMedicine 44:741–746. https://doi.org/10.1016/j.ebiom.2019.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holmes M, Flaminio Z, Vardhan M, Xu F, Li X, Devinsky O, Saxena D (2020) Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia 61(12):2619–2628. https://doi.org/10.1111/epi.16744

    Article  PubMed  Google Scholar 

  18. Ding M, Lang Y, Shu H, Shao J, Cui L (2021) Microbiota-gut-brain axis and epilepsy: a review on mechanisms and potential therapeutics. Front Immunol 12:742449. https://doi.org/10.3389/fimmu.2021.742449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chatzikonstantinou S, Gioula G, Kimiskidis VK, McKenna J, Mavroudis I, Kazis D (2021) The gut microbiome in drug-resistant epilepsy. Epilepsia Open 6(1):28–37. https://doi.org/10.1002/epi4.12461

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yue Q, Cai M, Xiao B, Zhan Q, Zeng C (2022) The microbiota-gut-brain axis and epilepsy. Cell Mol Neurobiol 42(2):439–453. https://doi.org/10.1007/s10571-021-01130-2

    Article  PubMed  Google Scholar 

  21. Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S (2022) A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin Microbiol Rev 35(1):e0033820. https://doi.org/10.1128/CMR.00338-20

    Article  PubMed  Google Scholar 

  22. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V (2018) The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59(12):2179–2193. https://doi.org/10.1111/epi.14596

    Article  PubMed  Google Scholar 

  23. Gavvala JR, Schuele SU (2016) New-onset seizure in adults and adolescents: a review. Jama 316(24):2657–2668. https://doi.org/10.1001/jama.2016.18625

    Article  PubMed  Google Scholar 

  24. Kostic D, Carlson R, Henke D, Rohn K, Tipold A (2019) Evaluation of IL-1β levels in epilepsy and traumatic brain injury in dogs. BMC Neurosci 20(1):29. https://doi.org/10.1186/s12868-019-0509-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poyuran R, Mahadevan A, Mhatre R, Arimappamagan A, Sinha S, Bharath RD, Rao MB, Saini J et al (2021) Neuropathological spectrum of drug resistant epilepsy: 15-years-experience from a tertiary care centre. J Clin Neurosci 91:226–236. https://doi.org/10.1016/j.jocn.2021.07.014

    Article  PubMed  Google Scholar 

  26. Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53(4):469–479

    Article  CAS  PubMed  Google Scholar 

  27. Schaub C, Uebachs M, Beck H (2007) Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy. Epilepsia 48(7):1339–1350

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Wang Y, Zhang S, Nao J, Liu Y, Wang Y, Ding F, Zhong K et al (2019) Subicular pyramidal neurons gate drug resistance in temporal lobe epilepsy. Ann Neurol 86(4):626–640. https://doi.org/10.1002/ana.25554

    Article  CAS  PubMed  Google Scholar 

  29. Geis C, Planagumà J, Carreño M, Graus F, Dalmau J (2019) Autoimmune seizures and epilepsy. J Clin Invest 129(3):926–940. https://doi.org/10.1172/JCI125178

    Article  PubMed  PubMed Central  Google Scholar 

  30. Husari KS, Dubey D (2019) Autoimmune epilepsy. Neurotherapeutics 16(3):685–702. https://doi.org/10.1007/s13311-019-00750-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Patra PH, Barker-Haliski M, White HS, Whalley BJ, Glyn S, Sandhu H, Jones N, Bazelot M et al (2019) Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia 60(2):303–314. https://doi.org/10.1111/epi.14629

    Article  CAS  PubMed  Google Scholar 

  32. Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 8:301. https://doi.org/10.3389/fneur.2017.00301

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, Kunz WS, Shorer Z et al (2014) Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 55(8):1255–1263. https://doi.org/10.1111/epi.12713

    Article  CAS  PubMed  Google Scholar 

  34. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  35. Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20(5):359–368. https://doi.org/10.1016/j.seizure.2011.01.003

    Article  PubMed  Google Scholar 

  36. Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64(10):930–942. https://doi.org/10.1016/j.addr.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  37. Liu JYW, Thom M, Catarino CB, Martinian L, Figarella-Branger D, Bartolomei F, Koepp M, Sisodiya SM (2012) Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy. Brain 135(Pt 10):3115–3133. https://doi.org/10.1093/brain/aws147

    Article  PubMed  Google Scholar 

  38. Brukner AM, Billington S, Benifla M, Nguyen TB, Han H, Bennett O, Gilboa T, Blatch D et al (2021) Abundance of -glycoprotein and breast cancer resistance protein measured by targeted proteomics in human epileptogenic brain tissue. Mol Pharm 18(6):2263–2273. https://doi.org/10.1021/acs.molpharmaceut.1c00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ko A, Youn SE, Kim SH, Lee JS, Kim S, Choi JR, Kim HD, Lee S-T et al (2018) Targeted gene panel and genotype-phenotype correlation in children with developmental and epileptic encephalopathy. Epilepsy Res 141:48–55. https://doi.org/10.1016/j.eplepsyres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  40. Calderon-Ospina CA, Galvez JM, López-Cabra C, Morales N, Restrepo CM, Rodríguez J, Aristizábal-Gutiérrez FA et al (2020) Possible genetic determinants of response to phenytoin in a group of Colombian patients with epilepsy. Front Pharmacol 11:555. https://doi.org/10.3389/fphar.2020.00555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orlandi A, Paolino MC, Striano P, Parisi P (2018) Clinical reappraisal of the influence of drug-transporter polymorphisms in epilepsy. Expert Opin Drug Metab Toxicol 14(5):505–512. https://doi.org/10.1080/17425255.2018.1473377

    Article  CAS  PubMed  Google Scholar 

  42. Löscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 42(7):1873–1888. https://doi.org/10.1007/s11064-017-2222-z

    Article  CAS  PubMed  Google Scholar 

  43. Zubiaur P, Del Peso-Casado M, Ochoa D, Enrique-Benedito T, Mejía-Abril G, Navares M, Villapalos-García G, Román M et al (2021) ABCB1 C3435T, G2677T/A and C1236T variants have no effect in eslicarbazepine pharmacokinetics. Biomed Pharmacother 142:112083. https://doi.org/10.1016/j.biopha.2021.112083

    Article  CAS  PubMed  Google Scholar 

  44. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1). https://doi.org/10.3390/microorganisms7010014

  45. Kennedy KM, Gerlach MJ, Adam T, Heimesaat MM, Rossi L, Surette MG, Sloboda DM, Braun T (2021) Fetal meconium does not have a detectable microbiota before birth. Nat Microbiol. https://doi.org/10.1038/s41564-021-00904-0

  46. Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, Shepherdson E, Singh GSN et al (2021) Microbial exposure during early human development primes fetal immune cells. Cell. https://doi.org/10.1016/j.cell.2021.04.039

  47. Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon M-C, Kiilerich P, Akrami R et al (2021) Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 29(5). https://doi.org/10.1016/j.chom.2021.02.021

  48. Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X, He S, Duan J et al (2018) Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 147:102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  49. Gong X, Liu X, Chen C, Lin J, Li A, Guo K, An D, Zhou D et al (2020) Alteration of gut microbiota in patients with epilepsy and the potential index as a biomarker. Front Microbiol 11:517797. https://doi.org/10.3389/fmicb.2020.517797

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee H, Lee S, Lee DH, Kim DW (2021) A comparison of the gut microbiota among adult patients with drug-responsive and drug-resistant epilepsy: an exploratory study. Epilepsy Res 172:106601. https://doi.org/10.1016/j.eplepsyres.2021.106601

    Article  CAS  PubMed  Google Scholar 

  51. Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, Li YH, Liao JX, Lu XG et al (2017) Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 23(33):6164–6171. https://doi.org/10.3748/wjg.v23.i33.6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y (2018) Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145:163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015

    Article  PubMed  Google Scholar 

  53. Gong X, Cai Q, Liu X, An D, Zhou D, Luo R, Peng R, Hong Z (2021) Gut flora and metabolism are altered in epilepsy and partially restored after ketogenic diets. Microb Pathog 155:104899. https://doi.org/10.1016/j.micpath.2021.104899

    Article  CAS  PubMed  Google Scholar 

  54. Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E et al (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ biofilms and microbiomes 5(1):5. https://doi.org/10.1038/s41522-018-0073-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Żarnowska I, Wróbel-Dudzińska D, Tulidowicz-Bielak M, Kocki T, Mitosek-Szewczyk K, Gasior M, Turski WA (2019) Changes in tryptophan and kynurenine pathway metabolites in the blood of children treated with ketogenic diet for refractory epilepsy. Seizure 69:265–272. https://doi.org/10.1016/j.seizure.2019.05.006

    Article  PubMed  Google Scholar 

  56. Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR (2018) The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Beneficial microbes 9(6):875–881. https://doi.org/10.3920/bm2018.0018

    Article  CAS  PubMed  Google Scholar 

  57. Cheraghmakani H, Rezai MS, Valadan R, Rahimzadeh G, Moradi M, Jahanfekr V, Moosazadeh M, Tabrizi N (2021) Ciprofloxacin for treatment of drug-resistant epilepsy. Epilepsy Res 176:106742. https://doi.org/10.1016/j.eplepsyres.2021.106742

    Article  CAS  PubMed  Google Scholar 

  58. He Z, Cui B-T, Zhang T, Li P, Long C-Y, Ji G-Z, Zhang F-M (2017) Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol 23(19):3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nowak M, Strzelczyk A, Reif PS, Schorlemmer K, Bauer S, Norwood BA, Oertel WH, Rosenow F et al (2012) Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure 21(3):227–228. https://doi.org/10.1016/j.seizure.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  60. Braakman HMH, van Ingen J (2018) Can epilepsy be treated by antibiotics? J Neurol 265(8):1934–1936. https://doi.org/10.1007/s00415-018-8943-3

    Article  PubMed  Google Scholar 

  61. Fenoglio-Simeone KA, Wilke JC, Milligan HL, Allen CN, Rho JM, Maganti RK (2009) Ketogenic diet treatment abolishes seizure periodicity and improves diurnal rhythmicity in epileptic Kcna1-null mice. Epilepsia 50(9):2027–2034. https://doi.org/10.1111/j.1528-1167.2009.02163.x

    Article  PubMed  PubMed Central  Google Scholar 

  62. Medel-Matus J-S, Shin D, Dorfman E, Sankar R, Mazarati A (2018) Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia open 3(2):290–294. https://doi.org/10.1002/epi4.12114

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bagheri S, Heydari A, Alinaghipour A, Salami M (2019) Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav: E&B 95:43–50. https://doi.org/10.1016/j.yebeh.2019.03.038

    Article  Google Scholar 

  64. Tahmasebi S, Oryan S, Mohajerani HR, Akbari N, Palizvan MR (2020) Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav E&B 104(Pt A):106897. https://doi.org/10.1016/j.yebeh.2019.106897

    Article  Google Scholar 

  65. Citraro R, Lembo F, De Caro C, Tallarico M, Coretti L, Iannone LF, Leo A, Palumbo D et al (2021) First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the WAG/Rij rat. Epilepsia 62(2):529–541. https://doi.org/10.1111/epi.16813

    Article  CAS  PubMed  Google Scholar 

  66. De Caro C, Leo A, Nesci V, Ghelardini C, di Cesare ML, Striano P, Avagliano C, Calignano A et al (2019) Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep 9(1):13983. https://doi.org/10.1038/s41598-019-50542-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muñana KR, Jacob ME, Callahan BJ (2020) Evaluation of fecal Lactobacillus populations in dogs with idiopathic epilepsy: a pilot study. Animal Microbiome 2(1). https://doi.org/10.1186/s42523-020-00036-6

  68. Miljanovic N, Potschka H (2021) The impact of Scn1a deficiency and ketogenic diet on the intestinal microbiome: a study in a genetic Dravet mouse model. Epilepsy Res 178:106826. https://doi.org/10.1016/j.eplepsyres.2021.106826

    Article  CAS  PubMed  Google Scholar 

  69. Şafak B, Altunan B, Topçu B, Eren Topkaya A (2020) The gut microbiome in epilepsy. Microb Pathog 139:103853. https://doi.org/10.1016/j.micpath.2019.103853

    Article  CAS  PubMed  Google Scholar 

  70. Vizuete AFK, Hennemann MM, Gonçalves CA, de Oliveira DL (2017) Phase-dependent astroglial alterations in Li-pilocarpine-induced status epilepticus in young rats. Neurochem Res 42(10):2730–2742. https://doi.org/10.1007/s11064-017-2276-y

    Article  CAS  PubMed  Google Scholar 

  71. Lévesque M, Avoli M (2013) The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 37(10 Pt 2):2887–2899. https://doi.org/10.1016/j.neubiorev.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang Y, Wang L, Ren S, Wu G, Wu J (2020) The expression of ZnT3 and GFAP is potentiated in the hippocampus of drug-resistant epileptic rats induced by amygdala kindling. Neuroimmunomodulation 27(2):104–112. https://doi.org/10.1159/000510399

    Article  CAS  PubMed  Google Scholar 

  73. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47(3):217–227

    Article  CAS  PubMed  Google Scholar 

  74. Mejía-Granados DM, Villasana-Salazar B, Lozano-García L, Cavalheiro EA, Striano P (2021) Gut-microbiota-directed strategies to treat epilepsy: clinical and experimental evidence. Seizure 90:80–92. https://doi.org/10.1016/j.seizure.2021.03.009

    Article  PubMed  Google Scholar 

  75. Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13(9):517–528. https://doi.org/10.1038/nrgastro.2016.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fülling C, Dinan TG, Cryan JF (2019) Gut microbe to brain signaling: what happens in vagus. Neuron 101(6). https://doi.org/10.1016/j.neuron.2019.02.008

  77. Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, Bohórquez DV (2018) A gut-brain neural circuit for nutrient sensory transduction. Science 361(6408). https://doi.org/10.1126/science.aat5236

  78. Muller PA, Schneeberger M, Matheis F, Wang P, Kerner Z, Ilanges A, Pellegrino K et al (2020) Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 583(7816):441–446. https://doi.org/10.1038/s41586-020-2474-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Vliet EA, Aronica E, Gorter JA (2015) Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 38:26–34. https://doi.org/10.1016/j.semcdb.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  80. Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee T-SW, Deshpande K et al (2021) Network-related changes in neurotransmitters and seizure propagation during rodent epileptogenesis. Neurology 96(18):e2261–e2271. https://doi.org/10.1212/WNL.0000000000011846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Kołosowska K, Krząścik P, Płaźnik A (2016) Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action. Neuroscience 313:130–148. https://doi.org/10.1016/j.neuroscience.2015.11.029

    Article  CAS  PubMed  Google Scholar 

  82. Gao K, Mu CL, Farzi A, Zhu WY (2020) Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr (Bethesda, Md) 11(3):709–723. https://doi.org/10.1093/advances/nmz127

    Article  Google Scholar 

  83. Fung TC (2020) The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis 136:104714. https://doi.org/10.1016/j.nbd.2019.104714

    Article  CAS  PubMed  Google Scholar 

  84. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J (2019) The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 56(3):1841–1851. https://doi.org/10.1007/s12035-018-1188-4

    Article  CAS  PubMed  Google Scholar 

  85. Matson V, Chervin CS, Gajewski TF (2021) Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160(2):600–613. https://doi.org/10.1053/j.gastro.2020.11.041

    Article  CAS  PubMed  Google Scholar 

  86. Zhou L, Chu C, Teng F, Bessman NJ, Goc J, Santosa EK, Putzel GG, Kabata H et al (2019) Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568(7752):405–409. https://doi.org/10.1038/s41586-019-1082-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leite AZ, Rodrigues NC, Gonzaga MI, Paiolo JCC, de Souza CA, Stefanutto NAV, Omori WP, Pinheiro DG et al (2017) Detection of increased plasma interleukin-6 levels and prevalence of and in the feces of type 2 diabetes patients. Front Immunol 8:1107. https://doi.org/10.3389/fimmu.2017.01107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu Y, Wang Y, Li H, Dai Y, Chen D, Wang M, Jiang X, Huang Z et al (2021) Altered fecal microbiota composition in older adults with frailty. Front Cell Infect Microbiol 11:696186. https://doi.org/10.3389/fcimb.2021.696186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang N, Liu H, Ma B, Zhao T, Chen Y, Yang Y, Zhao P, Han X (2021) CSF high-mobility group box 1 is associated with drug-resistance and symptomatic etiology in adult patients with epilepsy. Epilepsy Res 177:106767. https://doi.org/10.1016/j.eplepsyres.2021.106767

    Article  CAS  PubMed  Google Scholar 

  90. Walker LE, Sills GJ, Jorgensen A, Alapirtti T, Peltola J, Brodie MJ, Marson AG, Vezzani A et al (2021) High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: a proof-of-concept study. Epilepsia. https://doi.org/10.1111/epi.17116

  91. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236. https://doi.org/10.1038/nature12331

    Article  CAS  PubMed  Google Scholar 

  92. Weidner LD, Kannan P, Mitsios N, Kang SJ, Hall MD, Theodore WH, Innis RB, Mulder J (2018) The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia 59(8):1507–1517. https://doi.org/10.1111/epi.14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu D, Robinson AP, Ishii T, Duncan DAS, Alden TD, Goings GE, Ifergan I, Podojil JR et al (2018) Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 215(4):1169–1186. https://doi.org/10.1084/jem.20171285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Vries EE, van den Munckhof B, Braun KPJ, van Royen-Kerkhof A, de Jager W, Jansen FE (2016) Inflammatory mediators in human epilepsy: a systematic review and meta-analysis. Neurosci Biobehav Rev 63:177–190. https://doi.org/10.1016/j.neubiorev.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  95. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C et al (2015) GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 82:311–320. https://doi.org/10.1016/j.nbd.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  96. Lum GR, Olson CA, Hsiao EY (2020) Emerging roles for the intestinal microbiome in epilepsy. Neurobiol Dis 135:104576. https://doi.org/10.1016/j.nbd.2019.104576

    Article  CAS  PubMed  Google Scholar 

  97. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478. https://doi.org/10.1038/s41575-019-0157-3

    Article  PubMed  Google Scholar 

  98. Cleophas MCP, Ratter JM, Bekkering S, Quintin J, Schraa K, Stroes ES, Netea MG, Joosten LAB (2019) Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep 9(1):775. https://doi.org/10.1038/s41598-018-37246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112(Pt B):399–412. https://doi.org/10.1016/j.neuropharm.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  100. Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH et al (2018) Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the international ketogenic diet study group. Epilepsia Open 3(2):175–192. https://doi.org/10.1002/epi4.12225

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sondhi V, Agarwala A, Pandey RM, Chakrabarty B, Jauhari P, Lodha R, Toteja GS, Sharma S et al (2020) Efficacy of ketogenic diet, modified atkins diet, and low glycemic index therapy diet among children with drug-resistant epilepsy: a randomized clinical trial. JAMA Pediatr 174(10):944–951. https://doi.org/10.1001/jamapediatrics.2020.2282

    Article  PubMed  Google Scholar 

  102. Wu HC, Dachet F, Ghoddoussi F, Bagla S, Fuerst D, Stanley JA, Galloway MP, Loeb JA (2017) Altered metabolomic-genomic signature: a potential noninvasive biomarker of epilepsy. Epilepsia 58(9):1626–1636. https://doi.org/10.1111/epi.13848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murgia F, Muroni A, Puligheddu M, Polizzi L, Barberini L, Orofino G, Solla P, Poddighe S et al (2017) Metabolomics as a tool for the characterization of drug-resistant epilepsy. Front Neurol 8:459. https://doi.org/10.3389/fneur.2017.00459

    Article  PubMed  PubMed Central  Google Scholar 

  104. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH et al (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68(1). https://doi.org/10.1016/j.neuron.2010.09.002

  105. Dahlin M, Elfving A, Ungerstedt U, Amark P (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64(3):115–125

    Article  CAS  PubMed  Google Scholar 

  106. Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E (2006) The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 68(2):145–180

    Article  CAS  PubMed  Google Scholar 

  107. Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, Turnbaugh JA, Verdin E et al (2020) Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181(6). https://doi.org/10.1016/j.cell.2020.04.027

  108. Hartman AL, Zheng X, Bergbower E, Kennedy M, Hardwick JM (2010) Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia 51(8):1395–1402. https://doi.org/10.1111/j.1528-1167.2010.02577.x

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, Trivedi U, Bisgaard H et al (2018) Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: a double-blind, randomized, placebo-controlled trial. EBioMedicine 38:265–272. https://doi.org/10.1016/j.ebiom.2018.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmidt EKA, Raposo PJF, Torres-Espin A, Fenrich KK, Fouad K (2021) Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. J Neuroinflammation 18(1):144. https://doi.org/10.1186/s12974-021-02123-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sutter R, Rüegg S, Tschudin-Sutter S (2015) Seizures as adverse events of antibiotic drugs: a systematic review. Neurology 85(15):1332–1341. https://doi.org/10.1212/WNL.0000000000002023

    Article  CAS  PubMed  Google Scholar 

  112. Wanleenuwat P, Suntharampillai N, Iwanowski P (2020) Antibiotic-induced epileptic seizures: mechanisms of action and clinical considerations. Seizure 81:167–174. https://doi.org/10.1016/j.seizure.2020.08.012

    Article  PubMed  Google Scholar 

  113. Amlerova J, Šroubek J, Angelucci F, Hort J (2021) Evidences for a role of gut microbiota in pathogenesis and management of epilepsy. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22115576

  114. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I (2017) Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J Antimicrob Chemother 72(10):2891–2897. https://doi.org/10.1093/jac/dkx209

    Article  CAS  PubMed  Google Scholar 

  115. Mazarati A, Medel-Matus J-S, Shin D, Jacobs JP, Sankar R (2021) Disruption of intestinal barrier and endotoxemia after traumatic brain injury: implications for post-traumatic epilepsy. Epilepsia 62(6):1472–1481. https://doi.org/10.1111/epi.16909

    Article  CAS  PubMed  Google Scholar 

  116. Medel-Matus J-S, Lagishetty V, Santana-Gomez C, Shin D, Mowrey W, Staba RJ, Galanopoulou AS, Sankar R et al (2022) Susceptibility to epilepsy after traumatic brain injury is associated with preexistent gut microbiome profile. Epilepsia 63(7):1835–1848. https://doi.org/10.1111/epi.17248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong L, Zheng Q, Cheng Y, Zhou M, Wang M, Xu J, Xu Z, Wu G et al (2022) Gut microbial characteristics of adult patients with epilepsy. Front Neurosci 16:803538. https://doi.org/10.3389/fnins.2022.803538

    Article  PubMed  PubMed Central  Google Scholar 

  118. Russo E (2022) The gut microbiota as a biomarker in epilepsy. Neurobiol Dis 163:105598. https://doi.org/10.1016/j.nbd.2021.105598

    Article  CAS  PubMed  Google Scholar 

  119. Lee K, Kim N, Shim JO, Kim G-H (2020) Gut bacterial dysbiosis in children with intractable epilepsy. J Clin Med 10(1). https://doi.org/10.3390/jcm10010005

  120. Xu L, Chen D, Zhao C, Jiang L, Mao S, Song C, Gao F (2021) Decreased abundance of Akkermansia after adrenocorticotropic hormone therapy in patients with West syndrome. BMC Microbiol 21(1):126. https://doi.org/10.1186/s12866-021-02189-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wan L, Yang G, Zhang S, Sun Y, Li Z, Wang J, Shi X, Zou L (2021) Investigation of the association between imbalance of the intestinal flora and infantile spasms: a pilot case-control study. Transl Pediatr 10(4):819–833. https://doi.org/10.21037/tp-20-384

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gong X, Liu Y, Liu X, Li AQ, Guo KD, Zhou D, Hong Z (2022) Analysis of gut microbiota in patients with epilepsy treated with valproate: results from a three months observational prospective cohort study. Microb Pathog 162:105340. https://doi.org/10.1016/j.micpath.2021.105340

    Article  CAS  PubMed  Google Scholar 

  123. Eekers DBP, Pijnappel EN, Schijns OEMG, Colon A, Hoeben A, Zindler JD, Postma AA, Hoffmann AL et al (2018) Evidence on the efficacy of primary radiosurgery or stereotactic radiotherapy for drug-resistant non-neoplastic focal epilepsy in adults: a systematic review. Seizure 55:83–92. https://doi.org/10.1016/j.seizure.2018.01.009

    Article  PubMed  Google Scholar 

  124. Gross RE, Stern MA, Willie JT, Fasano RE, Saindane AM, Soares BP, Pedersen NP, Drane DL (2018) Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Ann Neurol 83(3):575–587. https://doi.org/10.1002/ana.25180

    Article  PubMed  PubMed Central  Google Scholar 

  125. Krishna V, Sammartino F, Rezai A (2018) A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 75(2):246–254. https://doi.org/10.1001/jamaneurol.2017.3129

    Article  PubMed  Google Scholar 

  126. Mengoni F, Salari V, Kosenkova I, Tsenov G, Donadelli M, Malerba G, Bertini G, Del Gallo F et al (2021) Gut microbiota modulates seizure susceptibility. Epilepsia 62(9):e153–e157. https://doi.org/10.1111/epi.17009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Liaoning Directed project for the planning of science and technology No.2021JH2/10300135 (to J.L.); Liaoning Province Excellent Talent Program Project No.xlyc1902031 (to J.L.); Dalian High-level Talent Team Project No.2022RG18 (to J.L.); National Health and Family Planning Commission and Food and Drug Administration No.CMR-20161129-1003 (to J.L.); Dalian Medical Science Research Project, No.2112006 (to Y.J.); and Dalian high-level talent innovation support plan, No. 2021RQ028 (to C.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. Conceptualization: Jing Liu and Wei Zou; writing—original draft preparation: Shuna Chen and Yang Jiao; writing—review and editing: Shuna Chen and Yang Jiao; visualization: Chao Han and Ying Li; supervision: Jing Liu and Wei Zou. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Zou or Jing Liu.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Jiao, Y., Han, C. et al. Drug-Resistant Epilepsy and Gut-Brain Axis: an Overview of a New Strategy for Treatment. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03757-2

Keywords

Navigation