Skip to main content

Advertisement

Log in

Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2023

This article has been updated

Abstract

Subarachnoid hemorrhage (SAH) accounts for 5% of all stroke cases and is responsible for significant permanent brain and neurological damage within the first few days. Loss of smell is one of those neurological disorders following olfactory bulb injury after SAH. Olfaction plays a critical role in several aspects of life. The primary underlying mechanism of olfactory bulb (OB) injury and loss of smell after SAH remains unknown. Piceatannol (PIC), a natural stilbene, possesses anti-inflammatory and anti-apoptotic effects against various diseases. In this study, we aimed to investigate the potential therapeutic effects of PIC on OB injury following SAH at molecular mechanism based on SIRT1, inflammatory (TNF-α, IL1-β, NF-κB, IL–6, TLR4), and apoptosis (p53, Bax, Bcl-2, caspase-3)-related gene expression markers and histopathology level; 27 male Wistar Albino rats were used in a pre-chiasmatic subarachnoid hemorrhage model. Animals were divided into groups (n = 9): SHAM, SAH, and PIC. Garcia’s neurological examination, brain water content, RT-PCR, histopathology, and TUNEL analyses were performed in all experimental groups with OB samples. Our results indicated that PIC administration significantly suppressed inflammatory molecules (TNF-α, IL–6, IL1-β, TLR4, NF-κB, SIRT1) and apoptotic molecules (caspase-3, p53, Bax). We also evaluated edema levels and cell damage in OB injury after SAH. Ameliorative effects of PIC are also observed at the histopathology level. Garcia’s neurological score test performed a neurological assessment. This study is the first to demonstrate the neuroprotective effects of PIC on OB injury after SAH. It suggests that PIC would be a potential therapeutic agent for alleviating OB injury after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The dataset of this study is available from the corresponding author if requested, and the manuscript also involves the data and materials.

Change history

References

  1. Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389:655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

    Article  PubMed  Google Scholar 

  2. Djelilovic-Vranic J, Basic-Kes V, Tiric-Campara M et al (2017) Follow-up of vasospasm by transcranial doppler sonography (TCD) in subarachnoid hemorrhage (SAH). Acta Inform Med 25:14–18. https://doi.org/10.5455/AIM.2017.25.14-18

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318. https://doi.org/10.1016/S0140-6736(07)60153-6

    Article  PubMed  Google Scholar 

  4. Etminan N, Chang HS, Hackenberg K et al (2019) Worldwide ıncidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol 76:588–597. https://doi.org/10.1001/JAMANEUROL.2019.0006

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kertzscher U, Schneider T, Goubergrits L et al (2009) Head motion therapy after subarachnoid hemorrhage: preliminary results of an in vitro study in a basal cistern model. IFMBE Proc 25:2103–2106. https://doi.org/10.1007/978-3-642-03882-2_558

    Article  Google Scholar 

  6. Martin GE, Junqué C, Juncadella M et al (2009) Olfactory dysfunction after subarachnoid hemorrhage caused by ruptured aneurysms of the anterior communicating artery. Clinical article J Neurosurg 111:958–962. https://doi.org/10.3171/2008.11.JNS08827

    Article  PubMed  Google Scholar 

  7. Aydin IH, Kadioǧlu HH, Tüzün Y et al (1996) Postoperative anosmia after anterior communicating artery aneurysms surgery by the pterional approach. Minim Invasive Neurosurg 39:71–73. https://doi.org/10.1055/S-2008-1052220

    Article  CAS  PubMed  Google Scholar 

  8. Fujiwara H, Yasui N, Nathal-Vera E, Suzuki A (1996) Anosmia after anterior communicating artery aneurysm surgery: comparison between the anterior interhemispheric and basal interhemispheric approaches. Neurosurgery 38:325–328. https://doi.org/10.1097/00006123-199602000-00017

    Article  CAS  PubMed  Google Scholar 

  9. de Vries J, Menovsky T, Ingels K (2007) Evaluation of olfactory nerve function after aneurysmal subarachnoid hemorrhage and clip occlusion. J Neurosurg 107:1126–1129. https://doi.org/10.3171/JNS-07/12/1126

    Article  PubMed  Google Scholar 

  10. Bor ASE, Niemansburg SL, Wermer MJH, Rinkel GJE (2009) Anosmia after coiling of ruptured aneurysms: prevalence, prognosis, and risk factors. Stroke 40:2226–2228. https://doi.org/10.1161/STROKEAHA.108.539445

    Article  PubMed  Google Scholar 

  11. Moman MR, Verweij BH, Buwalda J, Rinkel GJE (2009) Anosmia after endovascular and open surgical treatment of intracranial aneurysms. J Neurosurg 110:482–486. https://doi.org/10.3171/2008.8.JNS08761

    Article  PubMed  Google Scholar 

  12. Cahill WJ, Calvert JH, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353. https://doi.org/10.1038/SJ.JCBFM.9600283

    Article  CAS  PubMed  Google Scholar 

  13. Sabri M, Kawashima A, Ai J, Macdonald RL (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171. https://doi.org/10.1016/J.BRAINRES.2008.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang XS, Zhang X, Wu Q et al (2014) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192:206–213. https://doi.org/10.1016/J.JSS.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Xu L, Li B et al (2015) Macrophage-ınducible C-type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke 46:2277–2286. https://doi.org/10.1161/STROKEAHA.115.010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi M, Tamari K, Miyamura T, Takeuchi K (2013) Blockade of interleukin-6 receptor suppresses inflammatory reaction and facilitates functional recovery following olfactory system injury. Neurosci Res 76:125–132. https://doi.org/10.1016/J.NEURES.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  17. Al Salihi MO, Kobayashi M, Tamari K et al (2017) Tumor necrosis factor-α antagonist suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. Auris Nasus Larynx 44:70–78. https://doi.org/10.1016/J.ANL.2016.05.009

    Article  PubMed  Google Scholar 

  18. Zhao Y, Wang B, Gao Y et al (2007) Olfactory ensheathing cell apoptosis induced by hypoxia and serum deprivation. Neurosci Lett 421:197–202. https://doi.org/10.1016/J.NEULET.2007.04.028

    Article  CAS  PubMed  Google Scholar 

  19. Kawakami S, Kinoshita Y, Maruki-Uchida H et al (2014) Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients 6:4794–4804. https://doi.org/10.3390/NU6114794

    Article  PubMed  PubMed Central  Google Scholar 

  20. Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560. https://doi.org/10.1016/J.BCP.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  21. Lucas J, Hsieh TC, Halicka HD et al (2018) Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. Int J Oncol 53:1469–1480. https://doi.org/10.3892/IJO.2018.4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang D, Zhang Y, Zhang C et al (2019) Piceatannol pretreatment alleviates acute cardiac injury via regulating PI3K-Akt-eNOS signaling in H9c2 cells. Biomed Pharmacother 109:886–891. https://doi.org/10.1016/J.BIOPHA.2018.10.120

    Article  CAS  PubMed  Google Scholar 

  23. Wen J, Lin H, Zhao M et al (2018) Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: ınvolvement of ER stress, inflammation and oxidative stress. Int Immunopharmacol 64:131–139. https://doi.org/10.1016/J.INTIMP.2018.08.037

    Article  CAS  PubMed  Google Scholar 

  24. Kang JH, Choung SY (2016) Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res 39:1703–1715. https://doi.org/10.1007/S12272-016-0839-0

    Article  CAS  PubMed  Google Scholar 

  25. Maruki-Uchida H, Morita M, Yonei Y, Sai M (2018) Effect of passion fruit seed extract rich in piceatannol on the skin of women: a randomised, placebo-controlled, double-blind trial. J Nutr Sci Vitaminol (Tokyo) 64:75–80. https://doi.org/10.3177/JNSV.64.75

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Fang J, Zhou J et al (2022) Pterostilbene attenuates subarachnoid hemorrhage-ınduced brain ınjury through the SIRT1-dependent Nrf2 signaling pathway. Oxid Med Cell Longev 2022:1–11. https://doi.org/10.1155/2022/3550204

    Article  CAS  Google Scholar 

  27. Zeng Y, Fang Z, Lai J et al (2022) Activation of sirtuin-1 by pinocembrin treatment contributes to reduced early brain ınjury after subarachnoid hemorrhage. Oxid Med Cell Longev 2022:2242833. https://doi.org/10.1155/2022/2242833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan B, Zhao XD, Shen J da et al (2022) Activation of SIRT1 alleviates ferroptosis in the early brain ınjury after subarachnoid hemorrhage Oxid Med Cell Longev.https://doi.org/10.1155/2022/9069825

  29. Kitada M, Ogura Y, Maruki-Uchida H et al (2017) The effect of piceatannol from passion fruit (Passiflora edulis) seeds on metabolic health in humans Nutrients 9. https://doi.org/10.3390/NU9101142

  30. Quadros Gomes BA, Bastos Silva JP, Rodrigues Romeiro CF et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease role of SIRT1 Oxid Med Cell Longev. https://doi.org/10.1155/2018/8152373

  31. Prunell GF, Mathiesen T, Svendgaard NA (2002) A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport 13:2553–2556. https://doi.org/10.1097/00001756-200212200-00034

    Article  PubMed  Google Scholar 

  32. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation Stroke 26:627–634. https://doi.org/10.1161/01.STR.26.4.627

    Article  CAS  PubMed  Google Scholar 

  33. Ding K, Xu J, Wang H et al (2015) Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int 91:46–54. https://doi.org/10.1016/J.NEUINT.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  34. Chan V, O’kelly C, (2019) Response by Chan and O’Kelly to letter regarding article, “Declining Admission and Mortality Rates for Subarachnoid Hemorrhage in Canada Between 2004 and 2015.” Stroke 50:E133. https://doi.org/10.1161/STROKEAHA.119.025114

    Article  PubMed  Google Scholar 

  35. Maher M, Schweizer TA, Macdonald RL (2020) Treatment of spontaneous subarachnoid hemorrhage: guidelines and gaps. Stroke 51:1326–1332. https://doi.org/10.1161/STROKEAHA.119.025997

    Article  PubMed  Google Scholar 

  36. Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737. https://doi.org/10.1161/STR.0B013E3182587839

    Article  PubMed  Google Scholar 

  37. Cao Y, Li Y, He C et al (2021) Selective ferroptosis ınhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull 37:535–549. https://doi.org/10.1007/S12264-020-00620-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishida S, Kawauchi S, Toyooka T et al (2021) Local application of magnesium sulfate solution suppressed cortical spreading ıschemia and reduced brain damage in a rat subarachnoid hemorrhage-mimicking model. World Neurosurg 155:e704–e715. https://doi.org/10.1016/J.WNEU.2021.08.130

    Article  PubMed  Google Scholar 

  39. Qian C, Jin J, Chen J et al (2017) SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep 16:9627–9635. https://doi.org/10.3892/MMR.2017.7773

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Peng Y, Fan L et al (2018) Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother 99:947–955. https://doi.org/10.1016/J.BIOPHA.2018.01.093

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Chen G, Li J et al (2014) Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of proinflammatory cytokines. J Pineal Res 57:340–347. https://doi.org/10.1111/JPI.12173

    Article  CAS  PubMed  Google Scholar 

  42. Malçok ÜA, Büyük B (2021) Investigation of the neuroprotective effect of melatonin on hippocampal neuronal injury developing due to the neurotoxic effect of cisplatin. Izmir Democracy Univ Health Sci J. https://doi.org/10.52538/IDUHES.926453

  43. Qian X, Gong L, Zhou F, et al (2022) High-quality nursing combined with the whole-course responsibility nursing ıntervention reduces the ıncidence of complications in severe aneurysmal subarachnoid hemorrhage. Evid Based Complement Alternat Med. https://doi.org/10.1155/2022/3252718

  44. Deng X, Liang C, Qian L, Zhang Q (2021) miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage. Am J Transl Res 13:1064

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai L, Ge B, Xu S, et al (2021) Up-regulation of circARF3 reduces blood-brain barrier damage in rat subarachnoid hemorrhage model via miR-31-5p/MyD88/NF-κB axis. Aging 13:21345-21363. https://doi.org/10.18632/AGING.203468

  46. Doursout MF, Schurdell MS, Young LM et al (2013) Inflammatory cells and cytokines in the olfactory bulb of a rat model of neuroinflammation; insights into neurodegeneration? J Interferon Cytokine Res 33:376–383. https://doi.org/10.1089/JIR.2012.0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kobayashi M, Costanzo RM (2009) Olfactory nerve recovery following mild and severe injury and the efficacy of dexamethasone treatment. Chem Senses 34:573–580. https://doi.org/10.1093/CHEMSE/BJP038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inagawa T (2016) Risk factors for cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a review of the literature. World Neurosurg 85:56–76. https://doi.org/10.1016/J.WNEU.2015.08.052

    Article  PubMed  Google Scholar 

  49. Savarraj J, Parsha K, Hergenroeder G et al (2018) Early brain ınjury associated with systemic ınflammation after subarachnoid hemorrhage. Neurocrit Care 28:203–211. https://doi.org/10.1007/S12028-017-0471-Y

    Article  PubMed  Google Scholar 

  50. Chen Y, Zhang Q, shuang, Shao Q hang, et al (2019) NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol Sin 40:991–998. https://doi.org/10.1038/S41401-018-0209-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou S, Yin DP, Wang Y et al (2018) Dynamic changes in growth factor levels over a 7-day period predict the functional outcomes of traumatic brain injury. Neural Regen Res 13:2134–2140. https://doi.org/10.4103/1673-5374.241462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin CY, Moon DO, Lee KJ et al (2006) Piceatannol attenuates lipopolysaccharide-induced NF-kappaB activation and NF-kappaB-related proinflammatory mediators in BV2 microglia. Pharmacol Res 54:461–467. https://doi.org/10.1016/J.PHRS.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  53. Schmedtje JF, Ji YS, Liu WL et al (1997) Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608. https://doi.org/10.1074/JBC.272.1.601

    Article  CAS  PubMed  Google Scholar 

  54. Yin D, Zhou S, Xu X et al (2018) Dexmedetomidine attenuated early brain injury in rats with subarachnoid haemorrhage by suppressing the inflammatory response: the TLR4/NF-κB pathway and the NLRP3 inflammasome may be involved in the mechanism. Brain Res 1698:1–10. https://doi.org/10.1016/J.BRAINRES.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Y, Khan H, Hoi MPM, Cheang WS (2022) Piceatannol protects brain endothelial cell line (bEnd.3) against lipopolysaccharide-ınduced ınflammation and oxidative stress. Molecules 27. https://doi.org/10.3390/MOLECULES27041206

  56. Jin Q, Yan T, Ge X et al (2007) Cytoplasm-localised SIRT1 enhances apoptosis. J Cell Physiol 213:88–97. https://doi.org/10.1002/JCP.21091

    Article  CAS  PubMed  Google Scholar 

  57. Zhang XS, Wu Q, Wu LY et al (2016) Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis 7. https://doi.org/10.1038/CDDIS.2016.292

  58. He X, Sun J, Huang X (2018) Expression of caspase-3, Bax and Bcl-2 in hippocampus of rats with diabetes and subarachnoid hemorrhage. Exp Ther Med 15:873–877. https://doi.org/10.3892/ETM.2017.5438

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Yang X, Ge X, Zhang F (2019) Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother 109:726–733. https://doi.org/10.1016/J.BIOPHA.2018.10.161

    Article  CAS  PubMed  Google Scholar 

  60. Teng F, Yin Y, Guo J, Jiang M (2020) Calpastatin peptide attenuates early brain injury following experimental subarachnoid hemorrhage. Exp Ther Med 19. https://doi.org/10.3892/ETM.2020.8510

  61. Li S, Xiao X, Ni X et al (2017) Tetramethylpyrazine protects against early brain ınjury after experimental subarachnoid hemorrhage by affecting mitochondrial-dependent caspase-3 apoptotic pathway. https://doi.org/10.1155/2017/3514914

  62. Kobayashi M, Tamari K, al Salihi MO et al (2018) Anti-high mobility group box 1 antibody suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. J Neuroinflammation 15. https://doi.org/10.1186/S12974-018-1168-7

  63. Yu S, Zeng YJ, Sun XC (2018) Neuroprotective effects of p53/microRNA-22 regulate inflammation and apoptosis in subarachnoid hemorrhage. Int J Mol Med 41:2406–2412. https://doi.org/10.3892/IJMM.2018.3392

    Article  CAS  PubMed  Google Scholar 

  64. Cheng G, Wei L, Zhi-Dan S et al (2009) Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci 10. https://doi.org/10.1186/1471-2202-10-7

  65. Vellimana AK, Aum DJ, Diwan D, et al. 2020 SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage Exp Neurol 334 https://doi.org/10.1016/J.EXPNEUROL.2020.113484

  66. Xia DY, Yuan JL, Jiang XC et al (2021) SIRT1 promotes M2 microglia polarization via reducing ROS-mediated NLRP3 ınflammasome signaling after subarachnoid hemorrhage. Front Immunol 12. https://doi.org/10.3389/FIMMU.2021.770744

  67. Marin C, Langdon C, Alobid I et al (2019) Recovery of olfactory function after excitotoxic lesion of the olfactory bulbs ıs associated with ıncreases in bulbar SIRT1 and SIRT4 expressions. Mol Neurobiol 56:5643–5653. https://doi.org/10.1007/S12035-019-1472-Y

    Article  CAS  PubMed  Google Scholar 

  68. Wang KJ, Zhang WQ, Liu JJ et al (2020) Piceatannol protects against cerebral ischemia/reperfusion-induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway. Mol Med Rep 22:5399–5411. https://doi.org/10.3892/MMR.2020.11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao L, An R, Yang Y et al (2015) Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res 59:230–239. https://doi.org/10.1111/JPI.12254

    Article  CAS  PubMed  Google Scholar 

  70. Ran M, Li Z, Yang L et al (2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res 1610:61–68. https://doi.org/10.1016/J.BRAINRES.2015.03.043

    Article  CAS  PubMed  Google Scholar 

  71. Kakefuda K, Fujita Y, Oyagi A et al (2009) Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun 387:784–788. https://doi.org/10.1016/J.BBRC.2009.07.119

    Article  CAS  PubMed  Google Scholar 

  72. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 ınhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48. https://doi.org/10.1016/J.CMET.2008.05.004

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Coordination Unit [BAPD] of Çanakkale Onsekiz Mart University, Çanakkale, Turkey (Project Number: TSA-2021–3532).

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study’s conception and design. Material preparation and experimental model were performed by Ali Akar, Ümit Ali Malçok, and Mehmet Akif Ovalı. Rahime Özlem Öztopuz, Başak Büyük, and Damla Aykora performed data collection. Başak Büyük performed histopathology and TUNEL analysis. Rahime Özlem Öztopuz and Mehmet Akif Ovalı performed genetic analysis. Ali Akar and Ümit Ali Malçok wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ümit Ali MALÇOK.

Ethics declarations

Ethical Approval

This study was approved by the Ethics Committee of Çanakkale Onsekiz Mart University, Turkey. (Decision number protocol number: 2020-E.2000180528).

Consent to Participate and Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• SAH is a devastating and widespread form of brain injury, and a gold standard therapy does not exist. Although multiple operational and pharmacological methods have been developed, this entity is still associated with a considerable %50 rate of mortality.

• Loss of smell, which is called anosmia, is one of the neurological disorders for patients recovering from SAH. Anosmia has important side effects on life quality, food intake, social or sexual relationship, and desensitization to environmental dangers such as harmful substances or rotten food.

• PIC is one of the resveratrol analog molecules. In recent years, experimental studies indicated the antioxidant and anti-inflammatory curative effects of PIC in several diseases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AKAR, A., ÖZTOPUZ, R.Ö., BÜYÜK, B. et al. Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage. Mol Neurobiol 60, 3695–3706 (2023). https://doi.org/10.1007/s12035-023-03306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03306-x

Keywords

Navigation