Skip to main content
Log in

The Sirtuin 2 Inhibitor AK-7 Leads to an Antidepressant-Like Effect in Mice via Upregulation of CREB1, BDNF, and NTRK2 Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is one of the most important and serious health problems in developing countries which affects millions of people. It is associated with the decrease of the quality of life as well as suicides and mortality. The disease may show recurrent episodes in some patients. Obviously, not all the patients with depression could be treated properly, because some individuals are drug-resistant and the options for the therapy are limited. Therefore, it is crucial to investigate new molecules and pathways that may have possible antidepressant activity. Sirtuin (SIRT), known as a class III histone deacetylase, which is regulated by nicotinamide adenine dinucleotide (NAD +), is one of these molecules. In the current study, we investigated the possible antidepressant-like effect of SIRT2 inhibitor AK-7. For this purpose, behavioral tests were performed in chronic AK-7-treated mice, and the expression levels of BDNF, NGF, NTF3, CREB, NTRK2, ERK1, ERK2, and GAP43 genes were evaluated by qRT-PCR analysis in brain tissues. Protein levels for BDNF, CREB1, and NTRK2 were determined by western blot. Our data showed that AK-7 significantly decreased immobility time and showed antidepressant-like effect. In addition, AK-7 treatment significantly increased mRNA levels of CREB and NTRK2 and protein levels of CREB1, BDNF, and NTRK2. Finally, our results suggest that SIRT2 and AK-7 may have a potential role in the cellular mechanisms of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data and materials will be made available on reasonable request.

Code Availability

Not applicable.

References

  1. Sobocki P, Jönsson B, Angst J, Rehnberg C (2006) Cost of depression in Europe. J Ment Health Policy Econ 9(2):87–98

    PubMed  Google Scholar 

  2. Misztak P, Pańczyszyn-Trzewik P, Sowa-Kućma M (2018) Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 70(2):398–408

    Article  CAS  PubMed  Google Scholar 

  3. Ionescu DF, Rosenbaum JF, Alpert EA (2015) Pharmacological approaches to the challenge of treatment-resistant depression. Dialogues Clin Neurosci 17:111–126

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53:649–659

    Article  PubMed  Google Scholar 

  5. Goto S, Terao T, Hoaki N, Wang Y, Tsuchiyama K, Araki Y, Kohno K (2012) Is serotonergic function associated with the antidepressant effects of modified-electroconvulsive therapy? J Affect Disord 136(3):1062–1066

    Article  CAS  PubMed  Google Scholar 

  6. Whittle JR, Powell MJ, Popov VM, Shirley LA, Wang C, Pestell RG (2007) Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends Endocrinol Metab 18(9):356–364

    Article  CAS  PubMed  Google Scholar 

  7. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13

    Article  CAS  PubMed  Google Scholar 

  9. Lu G, Li J, Zhang H, Zhao X, Yan LJ, Yang X (2018) Role and possible mechanisms of Sirt1 in depression. Oxid Med Cell Longev 2018:8596903

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chandramowlishwaran P, Vijay A, Abraham D, Li G, Mwangi SM, Srinivasan S (2020) Role of sirtuins in modulating neurodegeneration of the enteric nervous system and central nervous system. Front Neurosci 14:614331

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yeong KY, Berdigaliyev N, Chang Y (2020) Sirtuins and their implications in neurodegenerative diseases from a drug discovery perspective. ACS Chem Neurosci 11(24):4073–4091

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK (2020) Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur J Pharmacol 867:172847

    Article  CAS  PubMed  Google Scholar 

  13. Biella G, Fusco F, Nardo E, Bernocchi O, Colombo A, Lichtenthaler SF, Forloni G, Albani D (2016) Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer’s disease mouse models. J Alzheimers Dis 53(3):1193–1207

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, Rauf NA, Wang H, Silverman RB, Ayata C, Maxwell MM, Steegborn C, Schwarzschild MA, Outeiro TF, Kazantsev AG (2015) The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS ONE 10(1):e0116919

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chopra V, Quinti L, Kim J, Vollor L, Narayanan KL, Edgerly C, Cipicchio PM, Lauver MA, Choi SH, Silverman RB, Ferrante RJ, Hersch S, Kazantsev AG (2012) The sirtuin 2 inhibitor AK7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2(6):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferland CL, Hawley WR, Puckett RE, Wineberg K, Lubin FD, Dohanich GP, Schrader LA (2013) Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biol Psychiatry 74:927–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, Kronman H, Neve RL, Nestler EJ, Ferguson D (2016) SIRT1 mediates depression-like behaviors in the nucleus accumbens. J Neurosci 36:8441–8452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erburu M, Muñoz-Cobo I, Diaz-Perdigon T, Mellini P, Suzuki T, Puerta E, Tordera RM (2017) SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action. Neuropharmacology 117:195–208

    Article  CAS  PubMed  Google Scholar 

  19. Duan CM, Zhang JR, Wan TF, Wang Y, Chen HS, Liu L (2020) SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res 378:112296

    Article  CAS  PubMed  Google Scholar 

  20. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  21. Inan SY, Yalcin I, Aksu F (2004) Dual effects of nitric oxide in the mouse forced swimming test: possible contribution of nitric oxide-mediated serotonin release and potassium channel modulation. Pharmacol Biochem Behav 77(3):457–464

    Article  CAS  PubMed  Google Scholar 

  22. Inan SY, Soner BC, Sahin AS (2016) Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Metab Brain Dis 31(4):849–857

    Article  CAS  PubMed  Google Scholar 

  23. Inan SY, Aksu F (2002) Amnesic effects of relative humidity and temperature in mice. Lab Anim 31(2):40–48

    Google Scholar 

  24. Venzala E, García-García AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology 224(2):313–325

    Article  CAS  PubMed  Google Scholar 

  25. Maurissen JP, Marable BR, Andrus AK, Stebbins KE (2003) Factors affecting grip strength testing. Neurotoxicol Teratol 25(5):543–553

    Article  CAS  PubMed  Google Scholar 

  26. Jung HY, Yoo DY, Kim JW, Kim DW, Choi JH, Chung JY, Won MH, Yoon YS, Hwang IK (2016) Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation. Lab Anim Res 32(4):224–230

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. J Neurochem 136(3):581–593

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Wang Y, Jin X, Hu D, Xia C, Xu H, Hu J (2020) NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation 17(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du X, Yin M, Yuan L, Zhang G, Fan Y, Li Z, Yuan N, Lv X, Zhao X, Zou S, Deng W, Kosten TR, Zhang XY (2020) Reduction of depression-like behavior in rat model induced by ShRNA targeting norepinephrine transporter in locus coeruleus. Transl Psychiatry 10(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erburu M, Muñoz-Cobo I, Domínguez-Andrés J, Beltran E, Suzuki T, Mai A, Valente S, Puerta E, Tordera RM (2015) Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. Eur Neuropsychopharmacol 25(11):2036–2048

    Article  CAS  PubMed  Google Scholar 

  31. Malhi GS, Morris G, Bell E, Hamilton A (2020) A new paradigm for achieving a rapid antidepressant response. Drugs 80(8):755–764

    Article  CAS  PubMed  Google Scholar 

  32. Jesulola E, Micalos P, Baguley IJ (2018) Understanding the pathophysiology of depression: from monoamines to the neurogenesis hypothesis model—are we there yet? Behav Brain Res 341:79–90

    Article  CAS  PubMed  Google Scholar 

  33. Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L (2018) Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 235(8):2195–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu B, Liu J, Wang M, Zhang Y, Li L (2017) From serotonin to neuroplasticity: evolvement of theories for major depressive disorder. Front Cell Neurosci 11:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serafini G (2012) Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatry 2(3):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  36. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 19(7):791–800

    Article  CAS  PubMed  Google Scholar 

  37. Yu H, Chen ZY (2011) The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 32(1):3–11

    Article  CAS  PubMed  Google Scholar 

  38. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, Newton SS, Duman RS (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16(11):1328–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77(3):916–928

    Article  CAS  PubMed  Google Scholar 

  41. Neve RL, Finch EA, Bird ED, Benowitz LI (1988) Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc Natl Acad Sci USA 85(10):3638–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC (1989) GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res 46(2):161–168

    Article  PubMed  Google Scholar 

  43. Han MH, Jiao S, Jia JM, Chen Y, Chen CY, Gucek M, Markey SP, Li Z (2013) The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics 12(12):3719–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16(7):2365–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59(12):1144–1150

    Article  CAS  PubMed  Google Scholar 

  46. Björkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79

    Article  PubMed  Google Scholar 

  47. Trautmann C, Bock A, Urbach A, Hübner CA, Engmann O (2020) Acute vitamin B12 supplementation evokes antidepressant response and alters Ntrk-2. Neuropharmacology 171:108112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank SUDAM staff (especially Salih Metin Gokyaprak, DVM and Mehmet Kosen) for their full support.

Funding

This study was supported by the Scientific and Research Projects Department at the University of Konya-NE (Project Number 191218013).

Author information

Authors and Affiliations

Authors

Contributions

The main idea of the present study was from Ebru Guclu and Salim Yalcin Inan. Salim Yalcin Inan and Ebru Guclu designed the protocol of the study. Hasibe Cingilli Vural provided budget for this study. While data collection for behavioral experiments has been done by Salim Yalcin Inan and Ebru Guclu, molecular studies have been performed by Ebru Guclu and Hasibe Cingilli Vural. Writing the manuscript has been done by Ebru Guclu and Salim Yalcin Inan. All authors contributed to and have approved the final manuscript before submission.

Corresponding author

Correspondence to Salim Yalcin Inan.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures conformed to NIH guidelines and were approved by the University of Selcuk Animal Care and Use Committee (Protocol 2019–28).

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guclu, E., Inan, S.Y. & Vural, H.C. The Sirtuin 2 Inhibitor AK-7 Leads to an Antidepressant-Like Effect in Mice via Upregulation of CREB1, BDNF, and NTRK2 Pathways. Mol Neurobiol 59, 7036–7044 (2022). https://doi.org/10.1007/s12035-022-03026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03026-8

Keywords

Navigation