Skip to main content

Advertisement

Log in

The amyloid precursor protein: a converging point in Alzheimer’s disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer’s disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430. https://doi.org/10.1038/gim.2015.117

    Article  PubMed  Google Scholar 

  2. Walsh DM, Selkoe DJ (2020) Amyloid β-protein and beyond: the path forward in Alzheimer’s disease. Curr Opin Neurobiol 61:116–124. https://doi.org/10.1016/j.conb.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Mann D, Davidson YS, Robinson AC, Allen N, Hashimoto T, Richardson A et al (2018) Patterns and severity of vascular amyloid in Alzheimer’s disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer’s disease. Acta Neuropathol 136:569–587. https://doi.org/10.1007/s00401-018-1866-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel H, Dobson RJ, Newhouse SJ (2019) A meta-analysis of Alzheimer’s disease brain transcriptomic data. J Alzheimers Dis 68:1635–1656. https://doi.org/10.3233/JAD-181085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH (2020) BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med Res Rev 40:339–384. https://doi.org/10.1002/med.21622

    Article  PubMed  Google Scholar 

  6. van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 83:311–319. https://doi.org/10.1016/j.biopsych.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  7. Pulina MV, Hopkins M, Haroutunian V, Greengard P, Bustos V (2020) C99 selectively accumulates in vulnerable neurons in Alzheimer’s disease. Alzheimers Dement 16:273–282. https://doi.org/10.1016/j.jalz.2019.09.002

    Article  PubMed  Google Scholar 

  8. Wang Z, Jackson RJ, Hong W, Taylor WM, Corbett GT, Moreno A et al (2017) Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP. J Neurosci 37:11947–11966. https://doi.org/10.1523/jneurosci.2009-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park G, Nhan HS, Tyan S-H, Kawakatsu Y, Zhang C, Navarro M et al (2020) Caspase activation and caspase-mediated cleavage of APP is associated with amyloid β-protein-induced synapse loss in Alzheimer’s disease. Cell Rep 31:107839. https://doi.org/10.1016/j.celrep.2020.107839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fish PV, Steadman D, Bayle ED, Whiting P (2019) New approaches for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 29:125–133. https://doi.org/10.1016/j.bmcl.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  11. Pankiewicz JE, Sadowski MJ (2017) Translational control of APP expression for Alzheimer disease therapy. Ann Pharmacol Pharm 2

  12. Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL et al (2010) Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s Disease and Down syndrome. PNAS 107:6538–6543. https://doi.org/10.1073/pnas.0914251107

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hung COY, Livesey FJ (2018) Altered γ-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer’s disease. Cell Rep 25:3647–60.e2. https://doi.org/10.1016/j.celrep.2018.11.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bredesen DE, John V, Galvan V (2010) Importance of the caspase cleavage site in Amyloid-β protein precursor. J Alzheimer’s Dis 22:57–63. https://doi.org/10.3233/jad-2010-100537

    Article  Google Scholar 

  15. Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281. https://doi.org/10.1038/nrn.2017.29

    Article  CAS  PubMed  Google Scholar 

  16. van der Kant R, Goldstein Lawrence SB (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32:502–515. https://doi.org/10.1016/j.devcel.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  17. C, Kienlen-Campard P, Coevoet M, Opsomer R, Tasiaux B, Melnyk P et al (2018) Contribution of the endosomal-lysosomal and proteasomal systems in amyloid-β precursor protein derived fragments processing. Front Cell Neurosci 12:435. https://doi.org/10.3389/fncel.2018.00435

  18. Matsui T, Ingelsson M, Fukumoto H, Ramasamy K, Kowa H, Frosch MP et al (2007) Expression of APP pathway mRNAs and proteins in Alzheimer’s disease. Brain Res 1161:116–123. https://doi.org/10.1016/j.brainres.2007.05.050

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Patassini S, Rustogi N, Riba-Garcia I, Hale BD, Phillips AM et al (2019) Regional protein expression in human Alzheimer’s brain correlates with disease severity. Commun Biol 2:43. https://doi.org/10.1038/s42003-018-0254-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B et al (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36:2473–87. https://doi.org/10.15252/embj.201797397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartley M, Marquardt K, Kirchhof D, Wilkins HM, Patterson D, Linseman DA (2012) Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. J Alzheimer’s Dis 28:855–868. https://doi.org/10.3233/JAD-2011-111172

    Article  CAS  Google Scholar 

  22. Lopez Sanchez MIG, Waugh HS, Tsatsanis A, Wong BX, Crowston JG, Duce JA et al (2017) Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta. Sci Rep 7:9835. https://doi.org/10.1038/s41598-017-10233-0

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng N, Jiao S, Gumaste A, Bai L, Belluscio L (2016) APP overexpression causes Aβ-independent neuronal death through intrinsic apoptosis pathway. eNeuro 3:ENEURO.0150–16.2016. https://doi.org/10.1523/eneuro.0150-16.2016

  24. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. PNAS 103:7130–7135. https://doi.org/10.1073/pnas.0509695103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Del Prete D, Rice RC, Rajadhyaksha AM, D’Adamio L (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem 291:17209–17227. https://doi.org/10.1074/jbc.M116.733626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abe K, St. George-Hyslop PH, Tanzi RE, Kogure K (1991) Induction of amyloid precursor protein mRNA after heat shock in cultured human lymphoblastoid cells. Neurosci Lett 125:169–171. https://doi.org/10.1016/0304-3940(91)90019-P

    Article  CAS  PubMed  Google Scholar 

  27. Yang L, Zhang H, Bruce JE (2009) Optimizing the detergent concentration conditions for immunoprecipitation (IP) coupled with LC-MS/MS identification of interacting proteins. Analyst 134:755–762. https://doi.org/10.1039/B813335B

    Article  CAS  PubMed  Google Scholar 

  28. Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ et al (2017) Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 95:1360–1372. https://doi.org/10.1002/jnr.23986

    Article  CAS  PubMed  Google Scholar 

  29. Sayer R, Robertson D, Balfour DJK, Breen KC, Stewart CA (2008) The effect of stress on the expression of the amyloid precursor protein in rat brain. Neurosci Lett 431:197–200. https://doi.org/10.1016/j.neulet.2007.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V (2013) Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun Ageing 10:15–15. https://doi.org/10.1186/1742-4933-10-15

  31. Puig KL, Floden AM, Adhikari R, Golovko MY, Combs CK (2012) Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS ONE 7:e30378. https://doi.org/10.1371/journal.pone.0030378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeong JI, Kim J, Kim KM, Choi I, Pratley RE, Lee Y-H (2014) Altered gene expression of amyloid precursor protein in the adipose tissue and brain of obese mice fed with long-term high-fat diet and streptozotocin-induced diabetic mice. Anim Cells Syst 18:219–227. https://doi.org/10.1080/19768354.2014.940383

    Article  CAS  Google Scholar 

  33. Min H, Kim J, Kim Y-J, Yoon M-S, Pratley RE, Lee Y-H (2017) Measurement of altered APP isoform expression in adipose tissue of diet-induced obese mice by absolute quantitative real-time PCR. Animal Cells Syst (Seoul) 21:100–107. https://doi.org/10.1080/19768354.2017.1290679

    Article  CAS  Google Scholar 

  34. An YA, Crewe C, Asterholm IW, Sun K, Chen S, Zhang F et al (2019) Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nat Metab 1:1243–1257. https://doi.org/10.1038/s42255-019-0149-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czeczor JK, Genders AJ, Aston-Mourney K, Connor T, Hall LG, Hasebe K et al (2018) APP deficiency results in resistance to obesity but impairs glucose tolerance upon high fat feeding. J Endocrinol 237:311. https://doi.org/10.1530/joe-18-0051

    Article  CAS  PubMed  Google Scholar 

  36. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL et al (2018) Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol Psychiatry 23:1948–1956. https://doi.org/10.1038/mp.2017.204

    Article  CAS  PubMed  Google Scholar 

  37. Tang W, Wang Y, Cheng J, Yao J, Yao Y-Y, Zhou Q et al (2020) CSF sAPPα and sAPPβ levels in Alzheimer’s disease and multiple other neurodegenerative diseases: A network meta-analysis. Neuromolecular Med 22:45–55. https://doi.org/10.1007/s12017-019-08561-7

    Article  CAS  PubMed  Google Scholar 

  38. Tackenberg C, Nitsch RM (2019) The secreted APP ectodomain sAPPα, but not sAPPβ, protects neurons against Aβ oligomer-induced dendritic spine loss and increased tau phosphorylation. Mol Brain 12:27. https://doi.org/10.1186/s13041-019-0447-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P et al (2011) Secreted amyloid precursor protein β and secreted amyloid precursor protein α induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS ONE 6:e16301. https://doi.org/10.1371/journal.pone.0016301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hesse R, von Einem B, Wagner F, Bott P, Schwanzar D, Jackson RJ et al (2018) sAPPβ and sAPPα increase structural complexity and E/I input ratio in primary hippocampal neurons and alter Ca2+ homeostasis and CREB1-signaling. Exp Neurol 304:1–13. https://doi.org/10.1016/j.expneurol.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  41. Botteri G, Salvadó L, Gumà A, Lee Hamilton D, Meakin PJ, Montagut G et al (2018) The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling. Metab Clin Exp 85:59–75. https://doi.org/10.1016/j.metabol.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  42. Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Lopera F, Jimenez-Del-Rio M (2020) Cholinergic-like neurons carrying PSEN1 E280A mutation from familial Alzheimer’s disease reveal intraneuronal sAPPβ fragments accumulation, hyperphosphorylation of TAU, oxidative stress, apoptosis and Ca2+ dysregulation: Therapeutic implications. PLoS ONE 15:e0221669. https://doi.org/10.1371/journal.pone.0221669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lauritzen I, Pardossi-Piquard R, Bauer C, Brigham E, Abraham J-D, Ranaldi S et al (2012) The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J Neurosci 32:16243–16255. https://doi.org/10.1523/jneurosci.2775-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lauritzen I, Pardossi-Piquard R, Bourgeois A, Pagnotta S, Biferi M-G, Barkats M et al (2016) Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol 132:257–276. https://doi.org/10.1007/s00401-016-1577-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bourgeois A, Lauritzen I, Lorivel T, Bauer C, Checler F, Pardossi-Piquard R (2018) Intraneuronal accumulation of C99 contributes to synaptic alterations, apathy-like behavior, and spatial learning deficits in 3×TgAD and 2×TgAD mice. Neurobiol Aging 71:21–31. https://doi.org/10.1016/j.neurobiolaging.2018.06.038

    Article  CAS  PubMed  Google Scholar 

  46. Lauritzen I, Bécot A, Bourgeois A, Pardossi-Piquard R, Biferi M-G, Barkats M et al (2019) Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Transl Neurodegener 8:35. https://doi.org/10.1186/s40035-019-0176-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim S, Sato Y, Mohan P, Peterhoff C, Pensalfini A, Rigoglioso A et al (2016) Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer’s disease. Mol Psychiatry 21:707–716. https://doi.org/10.1038/mp.2015.97

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Y, Sato Y, Im E, Berg M, Bordi M, Darji S et al (2019) Lysosomal dysfunction in Down syndrome is APP-dependent and mediated by APP-βCTF (C99). J Neurosci 39:5255–5268. https://doi.org/10.1523/jneurosci.0578-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cotter K, Stransky L, McGuire C, Forgac M (2015) Recent insights into the structure, regulation, and function of the vATPases. Trends Biochem Sci 40:611–622. https://doi.org/10.1016/j.tibs.2015.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nixon RA (2017) Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J 31:2729–2743. https://doi.org/10.1096/fj.201700359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Weering JRT, Scheper W (2019) Endolysosome and autolysosome dysfunction in Alzheimer’s disease: where intracellular and extracellular meet. CNS Drugs 33:639–648. https://doi.org/10.1007/s40263-019-00643-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pera M, Alcolea D, Sánchez-Valle R, Guardia-Laguarta C, Colom-Cadena M, Badiola N et al (2013) Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol 125:201–213. https://doi.org/10.1007/s00401-012-1062-9

    Article  CAS  PubMed  Google Scholar 

  53. Devi L, Ohno M (2012) Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis 45:417–424. https://doi.org/10.1016/j.nbd.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  54. Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR et al (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356–71. https://doi.org/10.15252/embj.201796797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15:30. https://doi.org/10.1186/s13024-020-00376-6

    Article  PubMed  PubMed Central  Google Scholar 

  56. Audano M, Schneider A, Mitro N (2018) Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 147:291–309. https://doi.org/10.1111/jnc.14471

    Article  CAS  PubMed  Google Scholar 

  57. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  58. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  Google Scholar 

  59. Huang Z, Yan Q, Wang Y, Zou Q, Li J, Liu Z et al (2020) Role of mitochondrial dysfunction in the pathology of amyloid-β. J Alzheimer’s Dis 78:505–514. https://doi.org/10.3233/jad-200519

    Article  CAS  Google Scholar 

  60. Minter MR, Taylor JM, Crack PJ (2016) The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136:457–74. https://doi.org/10.1111/jnc.13411

    Article  CAS  PubMed  Google Scholar 

  61. Ismail R, Parbo P, Madsen LS, Hansen AK, Hansen KV, Schaldemose JL et al (2020) The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: a longitudinal PET study. J Neuroinflammation 17:151. https://doi.org/10.1186/s12974-020-01820-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brewer GJ, Herrera RA, Philipp S, Sosna J, Reyes-Ruiz JM, Glabe CG (2020) Age-related intraneuronal aggregation of amyloid-β in endosomes, mitochondria, autophagosomes, and lysosomes. J Alzheimer’s Dis 73:229–246. https://doi.org/10.3233/jad-190835

    Article  CAS  Google Scholar 

  63. Marshall KE, Vadukul DM, Staras K, Serpell LC (2020) Misfolded amyloid-β-42 impairs the endosomal–lysosomal pathway. Cell Mol Life Sci 77:5031–5043. https://doi.org/10.1007/s00018-020-03464-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Samaey C, Schreurs A, Stroobants S, Balschun D (2019) Early cognitive and behavioral deficits in mouse models for tauopathy and Alzheimer’s disease. Front Aging Neurosci 11:335. https://doi.org/10.3389/fnagi.2019.00335

  65. Selkoe D, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. Embo Mol Med 8:595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29:613–627. https://doi.org/10.1515/revneuro-2017-0063

    Article  CAS  PubMed  Google Scholar 

  67. Talan J. Dementia experts on why the FDA approval of Aducanumab for Alzheimer’s gets mixed grades. Neurology Today. 09.06.2021. https://journals.lww.com/neurotodayonline/blog/breakingnews/pages/post.aspx?PostID=1125 Accessed on: 21.06.2021.

  68. Liu P-P, Xie Y, Meng X-Y, Kang J-S (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 4:29. https://doi.org/10.1038/s41392-019-0063-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Foley AM, Ammar ZM, Lee RH, Mitchell CS (2015) Systematic review of the relationship between Amyloid-β levels and measures of transgenic mouse cognitive deficit in Alzheimer’s disease. J Alzheimer’s Dis 44:787–795. https://doi.org/10.3233/jad-142208

    Article  CAS  Google Scholar 

  70. Morris GP, Clark IA, Vissel B (2018) Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol 136:663–689. https://doi.org/10.1007/s00401-018-1918-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doig AJ (2018) Positive feedback loops in Alzheimer’s disease: the Alzheimer’s feedback hypothesis. J Alzheimer’s Dis 66:25–36. https://doi.org/10.3233/jad-180583

    Article  CAS  Google Scholar 

  72. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid β-protein (Aβ)-containing astrocytes are located preferentially near N-terminal-truncated Aβ deposits in the human entorhinal cortex. Acta Neuropathol 100:608–617. https://doi.org/10.1007/s004010000242

    Article  CAS  PubMed  Google Scholar 

  73. Kuhn AJ, Abrams BS, Knowlton S, Raskatov JA (2020) Alzheimer’s Disease “Non-amyloidogenic” p3 Peptide Revisited: A Case for Amyloid-α. ACS Chem Neurosci 11:1539–1544. https://doi.org/10.1021/acschemneuro.0c00160

    Article  CAS  PubMed  Google Scholar 

  74. Szczepanik AM, Rampe D, Ringheim GE (2001) Amyloid-β peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. J Neurochem 77:304–317. https://doi.org/10.1046/j.1471-4159.2001.00240.x

    Article  CAS  PubMed  Google Scholar 

  75. Wei W, Norton DD, Wang X, Kusiak JW (2002) Aβ17–42 in Alzheimer’s disease activates JNK and caspase 8 leading to neuronal apoptosis. Brain 125:2036–2043. https://doi.org/10.1093/brain/awf205

    Article  PubMed  Google Scholar 

  76. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimer’s Dis 64:S567–S610. https://doi.org/10.3233/JAD-179941

    Article  CAS  Google Scholar 

  77. Marshall KE, Vadukul DM, Dahal L, Theisen A, Fowler MW, Al-Hilaly Y et al (2016) A critical role for the self-assembly of amyloid-β1-42 in neurodegeneration. Sci Rep 6:30182. https://doi.org/10.1038/srep30182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vadukul DM, Gbajumo O, Marshall KE, Serpell LC (2017) Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-β 1–42. FEBS Lett 591:822–830. https://doi.org/10.1002/1873-3468.12590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bukhari H, Glotzbach A, Kolbe K, Leonhardt G, Loosse C, Müller T (2017) Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 156:189–213. https://doi.org/10.1016/j.pneurobio.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  80. Pousinha PA, Mouska X, Raymond EF, Gwizdek C, Dhib G, Poupon G et al (2017) Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein. eLife 6:e25659. https://doi.org/10.7554/eLife.25659

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ghosal K, Pimplikar SW (2011) Aging and excitotoxic stress exacerbate neural circuit reorganization in amyloid precursor protein intracellular domain transgenic mice. Neurobiol Aging 32:2320.e1-e9. https://doi.org/10.1016/j.neurobiolaging.2010.04.020

    Article  CAS  Google Scholar 

  82. Vogt DL, Thomas D, Galvan V, Bredesen DE, Lamb BT, Pimplikar SW (2011) Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiol Aging 32:1725–1729. https://doi.org/10.1016/j.neurobiolaging.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  83. Ghosal K, Fan Q, Dawson HN, Pimplikar SW (2016) Tau protein mediates APP intracellular domain (AICD)-induced Alzheimer’s-like pathological features in mice. PLoS ONE 11:e0159435. https://doi.org/10.1371/journal.pone.0159435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pousinha PA, Mouska X, Bianchi D, Temido-Ferreira M, Rajão-Saraiva J, Gomes R et al (2019) The amyloid precursor protein C-terminal domain alters CA1 neuron firing, modifying hippocampus oscillations and impairing spatial memory encoding. Cell Rep 29:317–31.e5. https://doi.org/10.1016/j.celrep.2019.08.103

    Article  CAS  PubMed  Google Scholar 

  85. Trillaud-Doppia E, Boehm J (2018) The amyloid precursor protein intracellular domain is an effector molecule of metaplasticity. Biol Psychiatry 83:406–415. https://doi.org/10.1016/j.biopsych.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  86. Trillaud-Doppia E, Paradis-Isler N, Boehm J (2016) A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation. Neurobiol Dis 91:94–104. https://doi.org/10.1016/j.nbd.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  87. Park J-C, Han S-H, Mook-Jung I (2020) Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep 53:10–19. https://doi.org/10.5483/BMBRep.2020.53.1.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao M, Su J, Head E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403. https://doi.org/10.1016/j.nbd.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  89. Lu DC, Soriano S, Bredesen DE, Koo EH (2003) Caspase cleavage of the amyloid precursor protein modulates amyloid β-protein toxicity. J Neurochem 87:733–741. https://doi.org/10.1046/j.1471-4159.2003.02059.x

    Article  CAS  PubMed  Google Scholar 

  90. Park SA, Shaked GM, Bredesen DE, Koo EH (2009) Mechanism of cytotoxicity mediated by the C31 fragment of the amyloid precursor protein. Biochem Biophys Res Commun 388:450–455. https://doi.org/10.1016/j.bbrc.2009.08.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, Koo EH et al (2002) Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 82:283–294. https://doi.org/10.1046/j.1471-4159.2002.00970.x

    Article  CAS  PubMed  Google Scholar 

  92. Jefferson T, Čaušević M, auf dem Keller U, Schilling O, Isbert S, Geyer R et al (2011) Metalloprotease meprin β generates nontoxic N-terminal amyloid precursor protein fragments in vivo. J Biol Chem 286:27741–27750. https://doi.org/10.1074/jbc.M111.252718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bien J, Jefferson T, Čaušević M, Jumpertz T, Munter L, Multhaup G et al (2012) The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J Biol Chem 287:33304–33313. https://doi.org/10.1074/jbc.M112.395608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Becker-Pauly C, Pietrzik CU (2017) The metalloprotease meprin β is an alternative β-secretase of APP. Front Mol Neurosci 9:159. https://doi.org/10.3389/fnmol.2016.00159

  95. Schönherr C, Bien J, Isbert S, Wichert R, Prox J, Altmeppen H et al (2016) Generation of aggregation prone N-terminally truncated amyloid β peptides by meprin β depends on the sequence specificity at the cleavage site. Mol Neurodegener 11:19. https://doi.org/10.1186/s13024-016-0084-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiltfang J, Esselmann H, Cupers P, Neumann M, Kretzschmar H, Beyermann M et al (2001) Elevation of β-Amyloid peptide 2–42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J Biol Chem 276:42645–42657. https://doi.org/10.1074/jbc.M102790200

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Z, Song M, Liu X, Su Kang S, Duong DM, Seyfried NT et al (2015) Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat Commun 6:8762. https://doi.org/10.1038/ncomms9762

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X et al (2017) Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease. Nat Commun 8:14740. https://doi.org/10.1038/ncomms14740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Z, Liu X, Cheng L, Ye K (2020) Delta-secretase triggers Alzheimer’s disease pathologies in wild-type hAPP/hMAPT double transgenic mice. Cell Death Dis 11:1058. https://doi.org/10.1038/s41419-020-03270-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S et al (2015) η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526:443–447. https://doi.org/10.1038/nature14864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baranger K, Marchalant Y, Bonnet AE, Crouzin N, Carrete A, Paumier J-M et al (2016) MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer’s disease. Cell Mol Life Sci 73:217–236. https://doi.org/10.1007/s00018-015-1992-1

    Article  CAS  PubMed  Google Scholar 

  102. García-Ayllón M-S, Lopez-Font I, Boix CP, Fortea J, Sánchez-Valle R, Lleó A et al (2017) C-terminal fragments of the amyloid precursor protein in cerebrospinal fluid as potential biomarkers for Alzheimer disease. Sci Rep 7:2477. https://doi.org/10.1038/s41598-017-02841-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A (2015) Cathepsin L mediates the degradation of novel APP C-terminal fragments. Biochemistry 54:2806–2816. https://doi.org/10.1021/acs.biochem.5b00329

    Article  CAS  PubMed  Google Scholar 

  104. Ward J, Wang H, Saunders AJ, Tanzi RE, Zhang C (2017) Mechanisms that synergistically regulate η-secretase processing of APP and Aη-α protein levels: relevance to pathogenesis and treatment of Alzheimer’s disease. Discov Med 23:121

    PubMed  PubMed Central  Google Scholar 

  105. Cermak S, Kosicek M, Mladenovic-Djordjevic A, Smiljanic K, Kanazir S, Hecimovic S (2016) Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins. PLoS ONE 11:e0167428. https://doi.org/10.1371/journal.pone.0167428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chai YL, Chong JR, Weng J, Howlett D, Halsey A, Lee JH et al (2019) Lysosomal cathepsin D is upregulated in Alzheimer’s disease neocortex and may be a marker for neurofibrillary degeneration. Brain Pathol 29:63–74. https://doi.org/10.1111/bpa.12631

    Article  CAS  PubMed  Google Scholar 

  107. Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK et al (2015) Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. eLife 4:e05116. https://doi.org/10.7554/eLife.05116

    Article  PubMed Central  Google Scholar 

  108. Delay C, Calon F, Mathews P, Hébert SS (2011) Alzheimer-specific variants in the 3’UTR of amyloid precursor protein affect microRNA function. Mol Neurodegener 6:70. https://doi.org/10.1186/1750-1326-6-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E et al (2006) Promoter mutations that increase amyloid precursor protein expression are associated with Alzheimer disease. Am J Hum Genet 78:936–946. https://doi.org/10.1086/504044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bandyopadhyay S, Rogers JT (2014) Alzheimer’s disease therapeutics targeted to the control of amyloid precursor protein translation: Maintenance of brain iron homeostasis. Biochem Pharmacol 88:486–494. https://doi.org/10.1016/j.bcp.2014.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Long JM, Maloney B, Rogers JT, Lahiri DK (2019) Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer’s disease. Mol Psychiatr 24:345–363. https://doi.org/10.1038/s41380-018-0266-3

    Article  CAS  Google Scholar 

  112. Mikkilineni S, Cantuti-Castelvetri I, Cahill CM, Balliedier A, Greig NH, Rogers JT (2012) The anticholinesterase phenserine and its enantiomer posiphen as 5′ untranslated-region-directed translation blockers of the Parkinson’s alpha synuclein expression. Parkinsons Dis 2012:2012. https://doi.org/10.1155/2012/142372

  113. Teich AF, Sharma E, Barnwell E, Zhang H, Staniszewski A, Utsuki T et al (2018) Translational inhibition of APP by Posiphen: Efficacy, pharmacodynamics, and pharmacokinetics in the APP/PS1 mouse. Alzheimers Dement: TRCI 4:37–45. https://doi.org/10.1016/j.trci.2017.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  114. GlobalData-Healthcare. ANVS401’s trial signals a promising new approach for early Parkinson’s treatment. Clinical Trial Arena 24.05.2021. https://www.clinicaltrialsarena.com/comment/anvs401-trial-parkinsons-early-treatment/ Accessed on: 23.06.2021

  115. Tucker S, Ahl M, Bush A, Westaway D, Huang X, Rogers JT (2005) Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s APP 5’ untranslated region. Curr Alzheimer Res 2:249–254. https://doi.org/10.2174/1567205053585855

    Article  CAS  PubMed  Google Scholar 

  116. Tucker S, Ahl M, Cho H-H, Bandyopadhyay S, Cuny GD, Bush AI et al (2006) RNA therapeutics directed to the non-coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine. Curr Alzheimer Res 3:221–227. https://doi.org/10.2174/156720506777632835

    Article  CAS  PubMed  Google Scholar 

  117. Nelson RL, Guo Z, Halagappa VM, Pearson M, Gray AJ, Matsuoka Y et al (2007) Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Exp Neurol 205:166–176. https://doi.org/10.1016/j.expneurol.2007.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Severino M, Sivasaravanaparan M, Olesen LØ, Christian U, Metaxas A, Bouzinova EV et al (2018) Established amyloid-β pathology is unaffected by chronic treatment with the selective serotonin reuptake inhibitor paroxetine. Alzheimer’s Dement (N Y) 4:215–223. https://doi.org/10.1016/j.trci.2018.04.005

    Article  Google Scholar 

  119. Sheline YI, West T, Yarasheski K, Swarm R, Jasielec MS, Fisher JR et al (2014) An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Sci Transl Med 6:236re4-re4. https://doi.org/10.1126/scitranslmed.3008169

  120. Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A et al (2011) Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. PNAS 108:14968–14973. https://doi.org/10.1073/pnas.1107411108

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sanchez C, Reines EH, Montgomery SA (2014) A comparative review of escitalopram, paroxetine, and sertraline: are they all alike? Int Clin Psychopharmacol 29:185–196. https://doi.org/10.1097/yic.0000000000000023

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bandyopadhyay S, Cahill C, Balleidier A, Huang C, Lahiri DK, Huang X et al (2013) Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer’s disease. PLoS ONE 8:e65978. https://doi.org/10.1371/journal.pone.0065978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Asuni AA, Guridi M, Pankiewicz JE, Sanchez S, Sadowski MJ (2014) Modulation of amyloid precursor protein expression reduces β-amyloid deposition in a mouse model. Ann Neurol 75:684–699. https://doi.org/10.1002/ana.24149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li H-W, Zhang L, Qin C (2019) Current state of research on non-human primate models of Alzheimer’s disease. AMEM 2:227–238. https://doi.org/10.1002/ame2.12092

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yuksel M, Tacal O (2019) Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer’s disease development: An up-to-date review. Eur J Pharmacol 856:172415. https://doi.org/10.1016/j.ejphar.2019.172415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Research Foundation (RH—grant UID: 141924, AD—grant UID: 142719 and 138042) and the University of KwaZulu Natal for providing funding to conduct the work presented here.

Funding

This research was funded by the National Research Foundation to RH (Grant UID: 141924) and AD (Grant UID: 142719 and 138042) the University of KwaZulu Natal.

Author information

Authors and Affiliations

Authors

Contributions

Alexandré Delport was involved in conceptualisation, writing—original draft preparation, visualisation, funding acquisition.

Raymond Hewer helped in conceptualisation, writing—review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Alexandré Delport.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that there are no competing interests.

Disclosure of potential conflicts of interest

The authors declare that there are no conflicts of interest.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delport, A., Hewer, R. The amyloid precursor protein: a converging point in Alzheimer’s disease. Mol Neurobiol 59, 4501–4516 (2022). https://doi.org/10.1007/s12035-022-02863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02863-x

Keywords

Navigation