Skip to main content

Advertisement

Log in

Multivariate Classification of Brain Blood-Oxygen Signal Complexity for the Diagnosis of Children with Tourette Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. Because of its varied clinical expressions and lack of reliable diagnostic biomarker, present TS diagnosis still depends on qualitative descriptions of symptoms. Our study aimed to investigate whether the complexity of resting state brain activity can serve as a potential biomarker for TS diagnosis, since it has been used successfully in various neuropsychiatric disorders, including two common TS comorbidities: attention-deficit hyperactivity disorder (ADHD) and obsessive–compulsive disorder (OCD). In the current study, we used both univariate analysis and multivariate searchlight analysis with both linear and non-linear classification methods to explore the group differences in the complexity of resting state brain blood oxygen level-dependent (BOLD) signals between 25 TS boys without comorbidity and 25 sex, age and educational years matched healthy controls (HCs). We also investigated the relation between symptom severity in TS patients (YGTSS scores) and complexity indices derived from different analysis methods. We found: i) univariate analysis revealed reduced complexity in TS patients in the left cerebellum, left superior frontal gyrus, and left medial frontal gyrus; ii) multivariate analysis with non-linear classification method achieved the highest performance (accuracy: 0.94, sensitivity: 0.96, specificity: 0.92, AUC: 0.95) in bilateral supplementary motor areas; iii) significant correlations were found between complexity index derived from multivariate analysis with non-linear classification method and Tic severity (YGTSS scores) in the left cerebellum (r = 0.523, with YGTSS phonic) and in the right supplementary motor area (r = 0.767, with YGTSS motor). Taken together, these results suggested that complexity of resting state BOLD activity is a highly effective index for differentiating TS patients from normal controls. It has a good potential to be a quantitative biomarker for TS diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

DPABI could be freely available from http://rfmri.org/dpabi. CoSMoMVPA could be freely available from http://www.cosmomvpa.org/. LIBSVM could be freely available from https://github.com/cjlin1/libsvm. Function for MSE calculation could be freely available from https://ww2.mathworks.cn/matlabcentral/fileexchange/62706-multiscale-sample-entropy?s_tid=srchtitle.

References

  1. Leckman JF (2002) Tourette’s syndrome. The Lancet 360(9345):1577–1586

    Google Scholar 

  2. Peterson BS, Pine DS, Cohen P, Brook JS (2001) Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. J Am Acad Child Adolesc Psychiatry 40(6):685–695

    CAS  PubMed  Google Scholar 

  3. Freeman RD, Fast DK, Burd L, Kerbeshian J, Robertson MM, Sandor P (2000) An international perspective on Tourette syndrome: selected findings from 3500 individuals in 22 countries. Dev Med Child Neurol 42(7):436–447

    CAS  PubMed  Google Scholar 

  4. Cavanna AE, Servo S, Monaco F, Robertson MM (2009) The behavioral spectrum of Gilles de la Tourette syndrome. J Neuropsychiatry Clin Neurosci 21(1):13–23

    PubMed  Google Scholar 

  5. Robertson MM, Eapen V, Singer HS, Martino D, Scharf JM, Paschou P, Leckman JF (2017) Gilles de la Tourette syndrome. Nat Rev Dis Primers 3(1):1–20

    Google Scholar 

  6. Scharf JM, Miller LL, Gauvin CA, Alabiso J, Mathews CA, Ben-Shlomo Y (2015) Population prevalence of Tourette syndrome: A systematic review and meta-analysis. Mov Disord 30(2):221–228

    PubMed  Google Scholar 

  7. Shilon Y, Pollak Y, Benarroch F, Gross-Tsur V (2008) Factors influencing diagnosis delay in children with Tourette syndrome. Eur J Paediatr Neurol 12(5):398–400

    PubMed  Google Scholar 

  8. Felling RJ, Singer HS (2011) Neurobiology of Tourette syndrome: current status and need for further investigation. J Neurosci 31(35):12387–12395

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavanna AE, Seri S (2013) Tourette’s syndrome. BMJ 347:f4964

    PubMed  Google Scholar 

  10. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107(10):4734–4739

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1):43–56

    CAS  PubMed  Google Scholar 

  12. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol Rev 24(1):3–15

    PubMed  PubMed Central  Google Scholar 

  14. Ramkiran S, Heidemeyer L, Gaebler A, Shah NJ, Neuner I (2019) Alterations in basal ganglia-cerebello-thalamo-cortical connectivity and whole brain functional network topology in Tourette’s syndrome. Neuro Image: Clinical 24:101998

    Google Scholar 

  15. Tikoo S, Cardona F, Tommasin S, Giannì C, Conte G, Upadhyay N, Pantano P (2020) Resting-state functional connectivity in drug-naive pediatric patients with Tourette syndrome and obsessive-compulsive disorder. J Psychiatr Res 129:129–140

    PubMed  Google Scholar 

  16. Singer HS (2005) Tourette’s syndrome: from behaviour to biology. The Lancet Neurology 4(3):149–159

    PubMed  Google Scholar 

  17. Caligiore D, Mannella F, Arbib MA, Baldassarre G (2017) Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome. PLoS computational biology 13(3):e1005395

    PubMed  PubMed Central  Google Scholar 

  18. Wei L, Yu Y, Miao HH, Feng YX, Ji GJ, Feng JH (2017) Inter-hemispheric intrinsic connectivity as a Neuromarker for the diagnosis of boys with Tourette syndrome. Mol Neurobiol 54(4):2781

    Google Scholar 

  19. Wen H, Liu Y, Rekik I, Wang S, Chen Z, Zhang J, He H (2018) Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early Tourette syndrome children. Mol Neurobiol 55(4):3251–3269

    CAS  PubMed  Google Scholar 

  20. Yang AC, Tsai SJ (2013) Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry 45:253–257

    PubMed  Google Scholar 

  21. Hager B, Yang AC, Brady R, Meda S, Clementz B, Pearlson GD, Keshavan M (2017) Neural complexity as a potential translational biomarker for psychosis. J Affect Disord 216:89–99

    PubMed  Google Scholar 

  22. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13(8–9):909–922

    CAS  PubMed  Google Scholar 

  23. McDonough IM, Nashiro K (2014) Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Front Hum Neurosci 8:409

    PubMed  PubMed Central  Google Scholar 

  24. Takahashi T (2013) Complexity of spontaneous brain activity in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 45:258–266

    PubMed  Google Scholar 

  25. Sokunbi MO, Fung W, Sawlani V, Choppin S, Linden DE, Thome J (2013) Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Research: Neuroimaging 214(3):341–348

    PubMed  Google Scholar 

  26. Gu Y, Miao S, Han J, Zeng K, Ouyang G, Yang J, Li X (2017) Complexity analysis of fNIRS signals in ADHD children during working memory task. Sci Rep 7(1):1–10

    Google Scholar 

  27. Aydin S, Arica N, Ergul E, Tan O (2015) Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements. Int J Neural Syst 25(03):1550010

    PubMed  Google Scholar 

  28. Altuğlu TB, Metin B, Tülay EE, Tan O, Sayar GH, Taş C, Tarhan N (2020) Prediction of treatment resistance in obsessive compulsive disorder patients based on EEG complexity as a biomarker. Clin Neurophysiol 131(3):716–724

    PubMed  Google Scholar 

  29. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430

    PubMed  Google Scholar 

  30. Yang AC, Hong CJ, Liou YJ, Huang KL, Huang CC, Liu ME, Tsai SJ (2015) Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness. Hum Brain Mapp 36(6):2174–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sokunbi MO (2016) BOLD fMRI complexity predicts changes in brain processes, interactions and patterns, in health and disease. J Neurol Sci 367:347–348

    PubMed  Google Scholar 

  32. Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, Cohen DJ (1989) The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28(4):566–573. https://doi.org/10.1097/00004583-198907000-00015

    Article  CAS  PubMed  Google Scholar 

  33. Swanson JM (1992) School-based assessments and interventions for ADD students. KC Publishing, Irvine, CA

    Google Scholar 

  34. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Charney DS (1989) The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Archives of general psychiatry 46(11): 1006–1011.

  35. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    CAS  PubMed  Google Scholar 

  36. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3):339–351

    PubMed  Google Scholar 

  37. Yang AC, Tsai SJ, Yang CH, Kuo CH, Chen TJ, Hong CJ (2011) Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J Affect Disord 131(1–3):179–185

    PubMed  Google Scholar 

  38. Yang AC, Huang CC, Yeh HL, Liu ME, Hong CJ, Tu PC, Tsai SJ (2013) Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiol Aging 34(2):428–438

    CAS  PubMed  Google Scholar 

  39. Yang AC, Huang CC, Liu ME, Liou Y, Hong CJ, Lo MT, Tsai SJ (2014) The APOE ɛ4 allele affects complexity and functional connectivity of resting brain activity in healthy adults. Hum Brain Mapp 35(7):3238–3248

    PubMed  Google Scholar 

  40. Yang AC, Tsai SJ, Lin CP, Peng CK (2018) A strategy to reduce bias of entropy estimates in resting-state fMRI signals. Front Neurosci 12:398

    PubMed  PubMed Central  Google Scholar 

  41. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  42. Sokunbi MO (2014) Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets. Front Neuroinform 8:69

    PubMed  PubMed Central  Google Scholar 

  43. Oosterhof NN, Connolly AC, Haxby JV (2016) CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave. Front Neuroinform 10:27

    PubMed  PubMed Central  Google Scholar 

  44. Uddin LQ, Menon V, Young CB, Ryali S, Chen T, Khouzam A, Hardan AY (2011) Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiat 70(9):833–841

    PubMed  Google Scholar 

  45. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. The Lancet 347(9011):1312–1314

    CAS  Google Scholar 

  46. Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40(4):543–561

    CAS  PubMed  Google Scholar 

  47. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Stanley PCK, HE, (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci 99(suppl 1):2466–2472

    PubMed  PubMed Central  Google Scholar 

  48. Goldberger AL, Peng CK, Lipsitz LA (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23(1):23–26

    PubMed  Google Scholar 

  49. Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1456):781–795

    Google Scholar 

  50. Channon S, Pratt P, Robertson MM (2003) Executive function, memory, and learning in Tourette’s syndrome. Neuropsychology 17(2):247

    PubMed  Google Scholar 

  51. Watkins LH, Sahakian BJ, Robertson MM, Veale DM, Rogers RD, Pickard KM, Robbins TW (2005) Executive function in Tourette’s syndrome and obsessive-compulsive disorder. Psychol Med 35(4):571–582

    PubMed  Google Scholar 

  52. Cui Y, Jin Z, Chen X, He Y, Liang X, Zheng Y (2014) Abnormal baseline brain activity in drug-naive patients with Tourette syndrome: a resting-state fMRI study. Front Hum Neurosci 7:913

    PubMed  PubMed Central  Google Scholar 

  53. McCairn KW, Iriki A, Isoda M (2013) Global dysrhythmia of cerebro-basal ganglia–cerebellar networks underlies motor tics following striatal disinhibition. J Neurosci 33(2):697–708

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Neuner I, Werner CJ, Arrubla J, Stöcker T, Ehlen C, Wegener HP, Shah NJ (2014) Imaging the where and when of tic generation and resting state networks in adult Tourette patients. Front Hum Neurosci 8:362

    PubMed  PubMed Central  Google Scholar 

  55. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci 103(10):3863–3868

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stoodley CJ (2012) The cerebellum and cognition: evidence from functional imaging studies. The Cerebellum 11(2):352–365

    PubMed  Google Scholar 

  57. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869

    CAS  PubMed  Google Scholar 

  58. Tübing J, Gigla B, Brandt VC, Verrel J, Weissbach A, Beste C, Bäumer T (2018) Associative plasticity in supplementary motor area-motor cortex pathways in Tourette syndrome. Sci Rep 8(1):1–8

    Google Scholar 

  59. Wolicki SB, Bitsko RH, Danielson ML, Holbrook JR, Zablotsky B, Walkup JT, Mink JW (2019) Children with Tourette syndrome in the United States: parent-reported diagnosis, co-occurring disorders, severity, and influence of activities on tics. J Dev Behav Pediatr 40(6):407–414

    PubMed  PubMed Central  Google Scholar 

  60. Buse J, Schoenefeld K, Münchau A, Roessner V (2013) Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci Biobehav Rev 37(6):1069–1084

    CAS  PubMed  Google Scholar 

  61. Li N, Jasanoff A (2020) Local and global consequences of reward-evoked striatal dopamine release. Nature 580(7802):239–244

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities of China with Project Code: 2019QN81013.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: XX and XG; data collection: YF, YZ, YL and KY; data analysis: XG and YF; writing—original draft preparation: XX; funding acquisition: KY and XG; review and editing: YZ, YL, KY and XG. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ke Yao or Xiaoqing Gao.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Local Medical Ethics Committee of the Center for Cognition and Brain Disorders, Hangzhou Normal University, China. The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Informed consent was obtained from all parents.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoyang Xin and Yixuan Feng are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Feng, Y., Zang, Y. et al. Multivariate Classification of Brain Blood-Oxygen Signal Complexity for the Diagnosis of Children with Tourette Syndrome. Mol Neurobiol 59, 1249–1261 (2022). https://doi.org/10.1007/s12035-021-02707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02707-0

Keywords

Navigation