Skip to main content
Log in

Systematic Input–Output Mapping Reveals Structural Plasticity of VTA Dopamine Neurons-Zona Incerta Loop Underlying the Social Buffering Effects in Learned Helplessness

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A common phenomenon called social buffering (SB), communication within conspecific animals is a benefit for a stressed individual to better recover from aversive events, is crucial to all mammals. Although the dopamine reward system has been implicated in SB, it is not clear which neuronal populations are relevant and how they contribute. Here, we adopted a learned helplessness (LH) animal model of depression and found that LH subjects housed with a conspecific partner show better performance in the shuttle box test, showing that SB improves the stress-coping abilities to deal with stress. Bidirectional manipulation of ventral tegmental area (VTA) dopamine neurons by chemogenetic tools can mimic or block the SB effect in LH mice. To screen for SB-induced structure plasticity of VTA dopamine neurons, we employed viral genetic tools for mapping input and output architecture and found LH- and SB-triggered circuit-level changes in neuronal ensembles. Zona incerta (ZI), an overlapping brain region, was significantly changed in both anterograde and retrograde tracing during LH and SB. These results reveal a neural loop with structural plasticity between VTA dopamine neurons and ZI underlies the SB effects in LH and lays a foundation for studying how VTA dopamine neurons regulate SB-related neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Whitton AE, Treadway MT, Pizzagalli DA (2015) Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry 28(1):7–12. https://doi.org/10.1097/YCO.0000000000000122

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang Y, Wang ZH, Jin S, Gao D, Liu N, Chen SP, Zhang S, Liu Q, Liu E, Wang X, Liang X, Wei P, Li X, Li Y, Yue C, Li HL, Wang YL, Wang Q, Ke D, Xie Q, Xu F, Wang L, Wang JZ (2016) Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nat Commun 7:11935. https://doi.org/10.1038/ncomms11935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nobrega JN, Hedayatmofidi PS, Lobo DS (2016) Strong interactions between learned helplessness and risky decision-making in a rat gambling model. Sci Rep 6:37304. https://doi.org/10.1038/srep37304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slattery DA, Cryan JF (2017) Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology 234(9–10):1451–1465. https://doi.org/10.1007/s00213-017-4552-6

    Article  CAS  PubMed  Google Scholar 

  5. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109. https://doi.org/10.1038/sj.npp.1301574

    Article  CAS  PubMed  Google Scholar 

  6. Moreines JL, Owrutsky ZL, Grace AA (2017) Involvement of infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after chronic mild stress. Neuropsychopharmacology 42(4):904–913. https://doi.org/10.1038/npp.2016.249

    Article  CAS  PubMed  Google Scholar 

  7. Ries AS, Hermanns T, Poeck B, Strauss R (2017) Serotonin modulates a depression-like state in drosophila responsive to lithium treatment. Nat Commun 8:15738. https://doi.org/10.1038/ncomms15738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muir J, Lorsch ZS, Ramakrishnan C, Deisseroth K, Nestler EJ, Calipari ES, Bagot RC (2018) In vivo fiber photometry reveals signature of future stress susceptibility in nucleus accumbens. Neuropsychopharmacology 43(2):255–263. https://doi.org/10.1038/npp.2017.122

    Article  CAS  PubMed  Google Scholar 

  9. Plotnik JM, de Waal FB (2014) Asian elephants (Elephas maximus) reassure others in distress. PeerJ 2:e278. https://doi.org/10.7717/peerj.278

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lei K, Liu Y, Smith AS, Lonstein JS, Wang Z (2017) Effects of pair bonding on parental behavior and dopamine activity in the nucleus accumbens in male prairie voles. Eur J Neurosci 46(7):2276–2284. https://doi.org/10.1111/ejn.13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiyokawa Y, Ishida A, Takeuchi Y, Mori Y (2016) Sustained housing-type social buffering following social housing in male rats. Physiol Behav 158:85–89. https://doi.org/10.1016/j.physbeh.2016.02.040

    Article  CAS  PubMed  Google Scholar 

  12. Culbert BM, Gilmour KM, Balshine S (2019) Social buffering of stress in a group-living fish. Proc Biol Sci 286(1910):20191626. https://doi.org/10.1098/rspb.2019.1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeVries AC, Glasper ER, Detillion CE (2003) Social modulation of stress responses. Physiol Behav 79(3):399–407. https://doi.org/10.1016/s0031-9384(03)00152-5

    Article  CAS  PubMed  Google Scholar 

  14. Kikusui T, Winslow JT, Mori Y (2006) Social buffering: relief from stress and anxiety. Philos Trans R Soc Lond B Biol Sci 361(1476):2215–2228. https://doi.org/10.1098/rstb.2006.1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koolhaas JM, de Boer SF, Buwalda B, Meerlo P (2017) Social stress models in rodents: towards enhanced validity. Neurobiol Stress 6:104–112. https://doi.org/10.1016/j.ynstr.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  16. Papantoni A, Reinblatt SP, Findling RL, Moran TH, Mogayzel PJ Jr, Carnell S (2019) Appetitive characteristics in children with cystic fibrosis: questionnaire validation and associations with nutritional status. Appetite 139:90–94. https://doi.org/10.1016/j.appet.2019.03.034

    Article  PubMed  Google Scholar 

  17. Kiyokawa Y, Honda A, Takeuchi Y, Mori Y (2014) A familiar conspecific is more effective than an unfamiliar conspecific for social buffering of conditioned fear responses in male rats. Behav Brain Res 267:189–193. https://doi.org/10.1016/j.bbr.2014.03.043

    Article  PubMed  Google Scholar 

  18. Nakamura K, Ishii A, Kiyokawa Y, Takeuchi Y, Mori Y (2016) The strain of an accompanying conspecific affects the efficacy of social buffering in male rats. Horm Behav 82:72–77. https://doi.org/10.1016/j.yhbeh.2016.05.003

    Article  PubMed  Google Scholar 

  19. Kiyokawa Y, Kawai K, Takeuchi Y (2018) The benefits of social buffering are maintained regardless of the stress level of the subject rat and enhanced by more conspecifics. Physiol Behav 194:177–183. https://doi.org/10.1016/j.physbeh.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  20. Baron-Cohen S (2009) Autism: the empathizing-systemizing (E-S) theory. Ann N Y Acad Sci 1156:68–80. https://doi.org/10.1111/j.1749-6632.2009.04467.x

    Article  PubMed  Google Scholar 

  21. Dalla C, Edgecomb C, Whetstone AS, Shors TJ (2008) Females do not express learned helplessness like males do. Neuropsychopharmacology 33(7):1559–1569. https://doi.org/10.1038/sj.npp.1301533

    Article  PubMed  Google Scholar 

  22. Chen FS, Kumsta R, von Dawans B, Monakhov M, Ebstein RP, Heinrichs M (2011) Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proc Natl Acad Sci U S A 108(50):19937–19942. https://doi.org/10.1073/pnas.1113079108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smith AS, Wang Z (2014) Hypothalamic oxytocin mediates social buffering of the stress response. Biol Psychiatry 76(4):281–288. https://doi.org/10.1016/j.biopsych.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  24. Sullivan RM, Perry RE (2015) Mechanisms and functional implications of social buffering in infants: lessons from animal models. Soc Neurosci 10(5):500–511. https://doi.org/10.1080/17470919.2015.1087425

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FB, Young LJ (2016) Oxytocin-dependent consolation behavior in rodents. Science 351(6271):375–378. https://doi.org/10.1126/science.aac4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McQuaid RJ, McInnis OA, Paric A, Al-Yawer F, Matheson K, Anisman H (2016) Relations between plasma oxytocin and cortisol: the stress buffering role of social support. Neurobiol Stress 3:52–60. https://doi.org/10.1016/j.ynstr.2016.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Doom JR, Doyle CM, Gunnar MR (2017) Social stress buffering by friends in childhood and adolescence: effects on HPA and oxytocin activity. Soc Neurosci 12(1):8–21. https://doi.org/10.1080/17470919.2016.1149095

    Article  PubMed  Google Scholar 

  28. Yadid G, Friedman A (2008) Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog Brain Res 172:265–286. https://doi.org/10.1016/S0079-6123(08)00913-8

    Article  CAS  PubMed  Google Scholar 

  29. Morales M, Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18(2):73–85. https://doi.org/10.1038/nrn.2016.165

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez SP, Broussot L, Marti F, Contesse T, Mouska X, Soiza-Reilly M, Marie H, Faure P et al (2018) Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors. Nat Commun 9(1):4449. https://doi.org/10.1038/s41467-018-06809-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470(7335):535–539. https://doi.org/10.1038/nature09742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bariselli S, Hornberg H, Prevost-Solie C, Musardo S, Hatstatt-Burkle L, Scheiffele P, Bellone C (2018) Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat Commun 9(1):3173. https://doi.org/10.1038/s41467-018-05382-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landgraf D, Long J, Der-Avakian A, Streets M, Welsh DK (2015) Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS ONE 10(4):e0125892. https://doi.org/10.1371/journal.pone.0125892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J, Kim CH, Kim DG (2015) mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat Neurosci 18(7):1017–24. https://doi.org/10.1038/nn.4028

    Article  CAS  PubMed  Google Scholar 

  35. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873. https://doi.org/10.1016/j.neuron.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  36. Beier KT, Kim CK, Hoerbelt P, Hung LW, Heifets BD, DeLoach KE, Mosca TJ, Neuner S et al (2017) Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature 549(7672):345–350. https://doi.org/10.1038/nature23888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Yang SH, Kwon J, Lee HW, Kim H (2017) Mice subjected to uncontrollable electric shocks show depression-like behaviors irrespective of their state of helplessness. Behav Brain Res 322(Pt A):138–144. https://doi.org/10.1016/j.bbr.2017.01.008

    Article  PubMed  Google Scholar 

  38. Fraser ON, Stahl D, Aureli F (2008) Stress reduction through consolation in chimpanzees. Proc Natl Acad Sci U S A 105(25):8557–8562. https://doi.org/10.1073/pnas.0804141105

    Article  PubMed  PubMed Central  Google Scholar 

  39. Faustino AI, Tacao-Monteiro A, Oliveira RF (2017) Mechanisms of social buffering of fear in zebrafish. Sci Rep 7:44329. https://doi.org/10.1038/srep44329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiyokawa Y, Takeuchi Y, Nishihara M, Mori Y (2009) Main olfactory system mediates social buffering of conditioned fear responses in male rats. Eur J Neurosci 29(4):777–785. https://doi.org/10.1111/j.1460-9568.2009.06618.x

    Article  PubMed  Google Scholar 

  41. Mulej Bratec S, Xie X, Schmid G, Doll A, Schilbach L, Zimmer C, Wohlschlager A, Riedl V et al (2015) Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses. Neuroimage 123:138–148. https://doi.org/10.1016/j.neuroimage.2015.08.038

    Article  PubMed  Google Scholar 

  42. Takahashi Y, Kiyokawa Y, Kodama Y, Arata S, Takeuchi Y, Mori Y (2013) Olfactory signals mediate social buffering of conditioned fear responses in male rats. Behav Brain Res 240:46–51. https://doi.org/10.1016/j.bbr.2012.11.017

    Article  PubMed  Google Scholar 

  43. Sanchez MM, McCormack KM, Howell BR (2015) Social buffering of stress responses in nonhuman primates: maternal regulation of the development of emotional regulatory brain circuits. Soc Neurosci 10(5):512–526. https://doi.org/10.1080/17470919.2015.1087426

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kiyokawa Y, Takeuchi Y (2017) Social buffering ameliorates conditioned fear responses in the presence of an auditory conditioned stimulus. Physiol Behav 168:34–40. https://doi.org/10.1016/j.physbeh.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  45. Borges JV, de Freitas BS, Antoniazzi V, dos Santos CdS, Vedovelli K, Pires VN, Paludo L, Martins de Lima MN et al (2019) Social isolation and social support at adulthood affect epigenetic mechanisms, brain-derived neurotrophic factor levels and behavior of chronically stressed rats. Behav Brain Res 366:36–44. https://doi.org/10.1016/j.bbr.2019.03.025

    Article  Google Scholar 

  46. Ma DY, Chang WH, Chi MH, Tsai HC, Yang YK, Chen PS (2016) The correlation between perceived social support, cortisol and brain derived neurotrophic factor levels in healthy women. Psychiatry Res 239:149–153. https://doi.org/10.1016/j.psychres.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  47. Furtbauer I, Heistermann M (2016) Cortisol coregulation in fish Sci Rep 6:30334. https://doi.org/10.1038/srep30334

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Yuan TF (2016) Physical interaction is required in social buffering induced by a familiar conspecific. Sci Rep 6:39788. https://doi.org/10.1038/srep39788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li LF, Yuan W, He ZX, Wang LM, Jing XY, Zhang J, Yang Y, Guo QQ et al (2019) Involvement of oxytocin and GABA in consolation behavior elicited by socially defeated individuals in mandarin voles. Psychoneuroendocrinology 103:14–24. https://doi.org/10.1016/j.psyneuen.2018.12.238

    Article  CAS  PubMed  Google Scholar 

  50. Mirrione MM, Schulz D, Lapidus KA, Zhang S, Goodman W, Henn FA (2014) Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front Hum Neurosci 8:29. https://doi.org/10.3389/fnhum.2014.00029

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chou D, Peng HY, Lin TB, Lai CY, Hsieh MC, Wen YC, Lee AS, Wang HH et al (2018) (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 139:1–12. https://doi.org/10.1016/j.neuropharm.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  52. Strong PV, Christianson JP, Loughridge AB, Amat J, Maier SF, Fleshner M, Greenwood BN (2011) 5-hydroxytryptamine 2C receptors in the dorsal striatum mediate stress-induced interference with negatively reinforced instrumental escape behavior. Neuroscience 197:132–144. https://doi.org/10.1016/j.neuroscience.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  53. Diao Z, Yao L, Cheng Q, Wu M, Di Y, Qian Z, Wei C, Liu Y et al (2021) Involvement of midbrain dopamine neuron activity in negative reinforcement learning in mice. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02515-6

    Article  PubMed  Google Scholar 

  54. Okon-Singer H, Hendler T, Pessoa L, Shackman AJ (2015) The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Hum Neurosci 9:58. https://doi.org/10.3389/fnhum.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  55. Smith ML, Asada N, Malenka RC (2021) Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science 371(6525):153–159. https://doi.org/10.1126/science.abe3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peen NF, Duque-Wilckens N, Trainor BC (2021) Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 129:104933–104933. https://doi.org/10.1016/j.yhbeh.2021.104933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abraham E, Raz G, Zagoory-Sharon O, Feldman R (2018) Empathy networks in the parental brain and their long-term effects on children’s stress reactivity and behavior adaptation. Neuropsychologia 116(Pt A):75–85. https://doi.org/10.1016/j.neuropsychologia.2017.04.015

    Article  PubMed  Google Scholar 

  58. Lee IC, Yu TH, Liu WH, Hsu KS (2020) Social transmission and buffering of hippocampal metaplasticity after stress in mice. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1751-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciated Qian Zhang and Feng He for their technical assistant.

Funding

This work was supported financially by grants from the National Natural Science Foundation of China (No. 31571044, 31871073 to B.T., and No. 31600821 to P.Z.), Program for New Century Excellent Talents in University (No. NCET- 10–0415 to B.T.), and the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXJJS081 to P.Z.).

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by Bo Tian, Jie Ming, Pei Zhang, and Hongwei Cai. The experiments were complemented by Hongwei Cai, Guangjian Qi, Lijun Zhang, Ming Li, Xinyuan Lv, and Jie Lei. Statistical analysis was performed by Hongwei Cai and Tongxia Li. Hongwei Cai and Pei Zhang finished manuscript writing. Bo Tian, Jie Ming, and Pei Zhang provide the supervision and final check.

Corresponding authors

Correspondence to Jie Ming or Bo Tian.

Ethics declarations

Ethics Approval

All animal studies were performed in accordance with ethical guidelines and all procedures were approved by the Animal Care and Use Committee (Laboratory animal center of Huazhong University of Science and Technology, Wuhan, China).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Zhang, P., Qi, G. et al. Systematic Input–Output Mapping Reveals Structural Plasticity of VTA Dopamine Neurons-Zona Incerta Loop Underlying the Social Buffering Effects in Learned Helplessness. Mol Neurobiol 59, 856–871 (2022). https://doi.org/10.1007/s12035-021-02614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02614-4

Keywords

Navigation