Skip to main content

Advertisement

Log in

The Long Non-coding RNA NEAT1/miR-224-5p/IL-33 Axis Modulates Macrophage M2a Polarization and A1 Astrocyte Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To identify potential regulators and investigate the molecular mechanism of macrophage polarization affecting astrocyte activation from the perspective of non-coding RNA regulation, we isolated mouse bone marrow mononuclear cells (BMMNCs)–induced macrophages toward M1 or M2a polarization. Long non-coding RNA NEAT1 and IL-33 expression levels were significantly upregulated in M2a macrophages; NEAT1 knockdown in M2a macrophages markedly reduced the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages. NEAT1 acted as a competing endogenous RNA (ceRNA) to regulate IL-33 expression by sponging miR-224-5p in M2a macrophages; NEAT1 knockdown upregulated miR-224-5p expression, while miR-224-5p inhibition increased the protein content and concentration of IL-33. miR-224-5p inhibition exerted the opposite effects on the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages compared to NEAT1 knockdown; the effects of NEAT1 knockdown were significantly reversed by miR-224-5p inhibition. M2a macrophage conditioned medium (CM) significantly suppressed the activation of A1 astrocytes. NEAT1 knockdown M2a macrophage CM led to enhanced A1 astrocyte activation while miR-224-5p–silenced M2a macrophage CM led to a blockade of A1 astrocyte activation; the effects of NEAT1 knockdown M2a macrophage CM on A1 astrocyte activation were significantly reversed by miR-224-5p inhibition in M2a macrophages. The NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization, therefore affecting A1 astrocyte activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Please contact the authors for data requests.

References

  1. Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34(18):6316–6322. https://doi.org/10.1523/JNEUROSCI.4912-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. https://doi.org/10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  5. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. https://doi.org/10.1038/nn.3469

  6. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haan N, Zhu B, Wang J, Wei X, Song B (2015) Cross-talk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 12:109. https://doi.org/10.1186/s12974-015-0327-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627. https://doi.org/10.1038/nrn1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang H, Chu G, Pan C, Hu J, Guo C, Liu J, Wang Y, Wu J (2014) A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities. Exp Ther Med 8(6):1835–1840. https://doi.org/10.3892/etm.2014.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

  11. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490. https://doi.org/10.1016/j.immuni.2005.09.015

  12. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A 104(1):282–287. https://doi.org/10.1073/pnas.0606854104

    Article  CAS  PubMed  Google Scholar 

  13. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU (2011) The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol 187(4):1609–1616. https://doi.org/10.4049/jimmunol.1003080

    Article  CAS  PubMed  Google Scholar 

  14. Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A 106(22):9021–9026. https://doi.org/10.1073/pnas.0812690106

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31(1):84–98. https://doi.org/10.1016/j.immuni.2009.05.007

  16. Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY (1998) Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 187(5):787–794. https://doi.org/10.1084/jem.187.5.787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM, McKenzie AN, Xu D, Sattar N et al (2010) Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res 107(5):650–658. https://doi.org/10.1161/CIRCRESAHA.110.218867

  18. Pomeshchik Y, Kidin I, Korhonen P, Savchenko E, Jaronen M, Lehtonen S, Wojciechowski S, Kanninen K et al (2015) Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav Immun 44:68–81. https://doi.org/10.1016/j.bbi.2014.08.002

  19. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. https://doi.org/10.1016/j.cell.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Batista PJ, Chang HY (2013) Long non-coding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. https://doi.org/10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salmanidis M, Pillman K, Goodall G, Bracken C (2014) Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol 54:304–311. https://doi.org/10.1016/j.biocel.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166. https://doi.org/10.1016/j.canlet.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  23. Sen R, Ghosal S, Das S, Balti S, Chakrabarti J (2014) Competing endogenous RNA: the key to posttranscriptional regulation. Sci World J 2014:896206–896206. https://doi.org/10.1155/2014/896206

    Article  CAS  Google Scholar 

  24. Tan JY, Marques AC (2014) The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. Adv Genet 85:149–199. https://doi.org/10.1016/B978-0-12-800271-1.00003-2

    Article  CAS  PubMed  Google Scholar 

  25. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35(9):408–419. https://doi.org/10.1016/j.it.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9(4):514–520. https://doi.org/10.1016/j.coph.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu G, Abraham E (2013) MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 33(2):170–177. https://doi.org/10.1161/ATVBAHA.112.300068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D et al (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40(3):824–835. https://doi.org/10.1002/eji.200939889

  29. Huang Z, Luo Q, Yao F, Qing C, Ye J, Deng Y, Li J (2016) Identification of differentially expressed long non-coding RNAs in polarized macrophages. Sci Rep 6:19705. https://doi.org/10.1038/srep19705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao J, Dong R, Jiang L, Gong Y, Yuan M, You J, Meng W, Chen Z et al (2019) LncRNA-MM2P identified as a modulator of macrophage M2 polarization. Cancer Immunol Res 7(2):292–305. https://doi.org/10.1158/2326-6066.CIR-18-0145

  31. Sun D, Yu Z, Fang X, Liu M, Pu Y, Shao Q, Wang D, Zhao X et al (2017) LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 18(10):1801–1816. https://doi.org/10.15252/embr.201643668

  32. Choo Y, Tran P, Min B, Kim O, Nguyen H, Kwon S, Lee J (2017) Sappanone A inhibits RANKL-induced osteoclastogenesis in BMMs and prevents inflammation-mediated bone loss. Int Immunopharmacol 52:230–237. https://doi.org/10.1016/j.intimp.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  33. Longbrake EE, Lai W, Ankeny DP, Popovich PG (2007) Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem 102(4):1083–1094. https://doi.org/10.1111/j.1471-4159.2007.04617.x

    Article  CAS  PubMed  Google Scholar 

  34. Burgess AW, Metcalf D, Kozka IJ, Simpson RJ, Vairo G, Hamilton JA, Nice EC (1985) Purification of two forms of colony-stimulating factor from mouse L-cell-conditioned medium. J Biol Chem 260(29):16004–16011

    Article  CAS  Google Scholar 

  35. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England) 23(14):1846–1847. https://doi.org/10.1093/bioinformatics/btm254

    Article  CAS  Google Scholar 

  36. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47

    Article  Google Scholar 

  37. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, Göritz C, Frisén J (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173(1):153–165.e122. https://doi.org/10.1016/j.cell.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Municio C, Soler Palacios B, Estrada-Capetillo L, Benguria A, Dopazo A, García-Lorenzo E, Fernández-Arroyo S, Joven J et al (2016) Methotrexate selectively targets human proinflammatory macrophages through a thymidylate synthase/p53 axis. Ann Rheum Dis 75(12):2157–2165. https://doi.org/10.1136/annrheumdis-2015-208736

  39. Gerrick K, Gerrick E, Gupta A, Wheelan S, Yegnasubramanian S, Jaffee E (2018) Transcriptional profiling identifies novel regulators of macrophage polarization. PLoS One 13(12):e0208602. https://doi.org/10.1371/journal.pone.0208602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(4):455–466 e454. https://doi.org/10.1016/j.chom.2017.03.002

  41. Novakowski KE, Loukov D, Chawla V, Bowdish DM (2017) Bacterial binding, phagocytosis, and killing: measurements using colony forming units. Methods Mol Biol 1519:297–309. https://doi.org/10.1007/978-1-4939-6581-6_20

    Article  CAS  PubMed  Google Scholar 

  42. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pomeshchik Y, Kidin I, Korhonen P, Savchenko E, Jaronen M, Lehtonen S, Wojciechowski S, Kanninen K et al (2014) Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav Immun 44:68–81

  44. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci Off J Soc Neurosci 32(18):6391–6410. https://doi.org/10.1523/jneurosci.6221-11.2012

    Article  CAS  Google Scholar 

  45. Haan N, Zhu B, Wang J, Wei X, Song B (2015) Cross-talk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 12(1):1–10

    Article  CAS  Google Scholar 

  46. Ito I, Asai A, Suzuki S, Kobayashi M, Suzuki F (2017) M2b macrophage polarization accompanied with reduction of long non-coding RNA GAS5. Biochem Biophys Res Commun 493(1):170–175. https://doi.org/10.1016/j.bbrc.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  47. Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P et al (2019) Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 115(13):1886–1906. https://doi.org/10.1093/cvr/cvz085

  48. Hu J, Huang CX, Rao PP, Zhou JP, Wang X, Tang L, Liu MX, Zhang GG (2019) Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice. Eur J Pharmacol 851:122–132. https://doi.org/10.1016/j.ejphar.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  49. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, Li H, Wang G et al (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903. https://doi.org/10.1161/CIRCULATIONAHA.111.087817

  50. Zhang T, Ni S, Luo Z, Lang Y, Hu J, Lu H (2019) The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal Cord 57(2):141–149. https://doi.org/10.1038/s41393-018-0180-1

    Article  PubMed  Google Scholar 

  51. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70. https://doi.org/10.1038/nm.2266

    Article  CAS  PubMed  Google Scholar 

  52. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308. https://doi.org/10.1016/s0896-6273(00)80781-3

  53. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu J, Cao Y, Wu T, Li D, Lu H (2014) High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT. Med Phys 41(10):101904. https://doi.org/10.1118/1.4894704

    Article  PubMed  Google Scholar 

  55. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63(2):109–115.

  56. Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, Pekny M, Chen DF (2003) Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6(8):863–868. https://doi.org/10.1038/nn1088

    Article  CAS  PubMed  Google Scholar 

  57. Hampton DW, Rhodes KE, Zhao C, Franklin RJ, Fawcett JW (2004) The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127(4):813–820. https://doi.org/10.1016/j.neuroscience.2004.05.028

    Article  CAS  PubMed  Google Scholar 

  58. Rhodes KE, Moon LD, Fawcett JW (2003) Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience 120(1):41–56. https://doi.org/10.1016/s0306-4522(03)00285-9

    Article  CAS  PubMed  Google Scholar 

  59. Kong X, Gao J (2017) Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med 21(5):941–954. https://doi.org/10.1111/jcmm.13034

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dongliang Liu, Jianzhong Hu, and Hongbin Lu made substantial contribution to the conception and design of the work. Tianding Wu and Yudong Liu analyzed and interpreted the data. Dongliang Liu and Yuehua Wei drafted the manuscript. Jianzhong Hu and Hongbin Lu revised the work critically for important intellectual content. Final approval of the work was made by all authors.

Corresponding author

Correspondence to Jianzhong Hu.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving animals were in accordance with the ethical standards of Xiangya Hospital, Central South University. Consent to participate is not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

The differently expressed genes in GSE5296 (A), GSE42828 (B) and GSE93976 (C), ∣logfc∣ > 0.6, p < 0.05. (PNG 739 kb)

High Resolution Image (TIF 3158 kb)

Fig. S2

Expression of lncRNA NEAT1 after SCI or in macrophages based on online data. (A) GSE93976; (B) GSE42828; (C) GSE5296; (D) GSE71253; (E) GSE117040; (F) The expression correlation between IL-33 and NEAT1 based on GSE96054 and GSE93976. (PNG 256 kb)

High Resolution Image (TIF 257 kb)

Fig. S3

Inhibition of IL-33 reduced the expression of M2a markers in M2a macrophage. (A) M0 macrophages were transfected with si-IL33-1 and si-IL-33-2 and then induced M2a polarization. The expression of IL-33 in M2a macrophages was determined by immunoblotting. The si-IL-33-2 showed a better inference effect and was chosen for further experiments. (B) The levels of NEAT1 in si-IL-33 transfected M2a macrophages were determined by RT-PCR. (C-D) The M2a markers CD206, Arg-1, and YM-1, were determined by IF or western blot. **P < 0.05 compared to the si-NC group. (PNG 969 kb)

High Resolution Image (TIF 4565 kb)

Table S1

(DOCX 21 kb)

Supplementary File 1

The CT value of RT-PCR. (XLSX 44 kb)

Supplementary File 2

The raw data of PCR melting curve and amplification curve. (PDF 10520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wei, Y., Liu, Y. et al. The Long Non-coding RNA NEAT1/miR-224-5p/IL-33 Axis Modulates Macrophage M2a Polarization and A1 Astrocyte Activation. Mol Neurobiol 58, 4506–4519 (2021). https://doi.org/10.1007/s12035-021-02405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02405-x

Keywords

Navigation