Skip to main content
Log in

Simvastatin Enhances Muscle Regeneration Through Autophagic Defect-Mediated Inflammation and mTOR Activation in G93ASOD1 Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterised by the selective loss of motor neurons, muscular atrophy, and degeneration. Statins, as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are the most widely prescribed drugs to lower cholesterol levels and used for the treatment of cardiovascular and cerebrovascular diseases. However, statins are seldom used in muscular diseases, primarily because of their rare statin-associated myopathy. Recently, statins have been shown to reduce muscular damage and improve its function. Here, we investigated the role of statins in myopathy using G93ASOD1 mice. Our results indicated that simvastatin significantly increased the autophagic flux defect and increased inflammation in the skeletal muscles of G93ASOD1 mice. We also found that increased inflammation correlated with aggravated muscle atrophy and fibrosis. Nevertheless, long-term simvastatin treatment promoted the regeneration of damaged muscle by activating the mammalian target of rapamycin pathway. However, administration of simvastatin did not impede vast muscle degeneration and movement dysfunction resulting from the enhanced progressive impairment of the neuromuscular junction. Together, our findings highlighted that simvastatin exacerbated skeletal muscle atrophy and denervation in spite of promoting myogenesis in damaged muscle, providing new insights into the selective use of statin-induced myopathy in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyo-trophic lateral sclerosis. Nature 364(6435):362. https://doi.org/10.1038/364362c0

    Article  CAS  PubMed  Google Scholar 

  2. Iwasaki Y, Sugimoto H, Ikeda K, Takamiya K, Shiojima T, Kinoshita M (1991) Muscle morphometry in amyotrophic lateral sclerosis. Int J Neurosci 58:165–170. https://doi.org/10.3109/0020-7459108985432

    Article  CAS  PubMed  Google Scholar 

  3. Jensen L, Jorgensen LH, Bech RD, Frandsen U, Schroder HD (2016) Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis. Biomed Res Int 2016:5930621–5930612. https://doi.org/10.1155/2016/5930621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Sarraj S, King A, Cleveland M, Pradat PF, Corse A, Rothstein JD, Leigh PN, Abila B et al (2014) Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathol Commun 2:165. https://doi.org/10.1186/s40478-014-0165-z

  5. Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24(12):635–643. https://doi.org/10.1016/j.tem.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  6. Fan Z, Xiao Q (2020) Impaired autophagic flux contributes to muscle atrophy in obesity by affecting muscle degradation and regeneration. Biochem Biophys Res Commun 525(2):462–468. https://doi.org/10.1016/j.b-brc.2020.02.110

    Article  CAS  PubMed  Google Scholar 

  7. Fan Z, Wu J, Chen QN, Lyu AK, Chen JL, Sun Y, Lyu Q, Zhao YX et al (2020) Type 2 diabetes-induced overactivation of P300 contributes to skeletal muscle atrophy by inhibiting autophagic flux. Life Sci 258(undefined):118243. https://doi.org/10.1016/j.lfs.2020.118243

  8. Xiao Y, Ma C, Yi J, Wu S, Luo G, Xu X, Lin PH, Sun J, Zhou J (2015) Suppressed autophagy flux in skeletal muscle of an amyotrophic lateral sclerosis mouse model during disease progression. Phys Rep 3 (1). doi:https://doi.org/10.14814/phy2.12271

  9. Sadeghi A, Shabani M, Alizadeh S, Meshkani R (2020) Interplay between oxidative stress and autophagy function and its role in inflammatory cytokine expression induced by palmitate in skeletal mus-cle cells. Cytokine 125:154835. https://doi.org/10.1016/j.cyto.2019.154835

    Article  CAS  PubMed  Google Scholar 

  10. Doerr V, Montalvo RN, Kwon OS, Talbert EE, Hain BA, Houston FE, Smuder AJ (2020) Prevention of doxorubicin-induced autophagy attenuates oxidative stress and skeletal muscle dysfunction. Antioxidants (Basel) 9(3):263. https://doi.org/10.3390/antiox9030263.P

    Article  CAS  Google Scholar 

  11. Ko FC, Abadir PM, Marx R, Westbrook R, Cooke CA, Yang H, Walston JD (2016) Impaired mitochondrial degradation by autophagy in the skeletal muscle of the aged female interleukin 12 null mouse. Exp Gerontol 73:23–27. https://doi.org/10.1016/j.exger.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  12. De Castro GS, Simoes E, Lima JDCC, Ortiz-Silva M, Festuccia WT, Tokeshi F, Alcântara PS, Otoch JP et al (2019) Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers 11(9). https://doi.org/10.3390/cancers11091264

  13. Asami Y, Aizawa M, Kinoshita M, Ishikawa J, Sakuma K (2018) Resveratrol attenuates denervation-induced muscle atrophy due to the blockade of atrogin-1 and p62 accumulation. Int J Med Sci 15(6):628–637. https://doi.org/10.7150/ijms.22723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaillou T, Lanner JT (2016) Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 30(12):3929–3941. https://doi.org/10.1096/fj.201600757R

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42. https://doi.org/10.1038/nature16187

  16. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460(7255):627–631. https://doi.org/10.1038/nature08209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ge Y, Wu AL, Warnes C, Liu J, Zhang C, Kawasome H, Terada N, Boppart MD et al (2009) mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol 297(6):C1434–C1444. https://doi.org/10.1152/ajpcell.00248.2009

  18. Zhang P, Liang X, Shan T, Jiang Q, Deng C, Zheng R, Kuang S (2015) mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. Biochem Biophys Res Commun 463:102–108. https://doi.org/10.1016/j.bbrc.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rion N, Castets P, Lin S, Enderle L, Reinhard JR, Eickhorst C (2019) mTOR controls embryonic and adult myogenesis via mTORC1. Development 146 (7). doi:https://doi.org/10.1242/de-v.172460

  20. Wei XY, Luo LF, Chen JZ (2019) Roles of mTOR signaling in tissue regeneration. Cells 8(9):1075. https://doi.org/10.3390/cells8091075

    Article  CAS  PubMed Central  Google Scholar 

  21. Koriyama Y, Kamiya M, Arai K, Sugitani K, Ogai K, Kato S (2014) Nipradilol promotes axon regeneration through S-Nitrosylation of PTEN in retinal ganglion cells. Adv Exp Med Biol 801:751–757. https://doi.org/10.1007/978-1-4614-3209-8_94

    Article  PubMed  Google Scholar 

  22. Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo L, Bishop WA, Fischer AJ (2016) mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 143(11):1859–1873. https://doi.org/10.1242/dev.133215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iffland PH II, Baybis M, Barnes AE, Leventer RJ, Lockhart PJ, Crino PB (2018) DEPDC5 and NPRL3 modulate cell size, filopodial outgrowth, and localization of mTOR in neural progenitor cells and neurons. Neurobiol Dis 114:184–193. https://doi.org/10.1016/j.nbd.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019. https://doi.org/10.1038/ncb1101-1014

  25. Otrockadomagala I, Paździorczapula K, Maślanka T (2018) Simvastatin impairs the inflammatory and repair phases of the postinjury skeletal muscle regeneration. Biomed Res Int 201-8:7617312. https://doi.org/10.1155/2018/7617-312

    Article  Google Scholar 

  26. Alrasheed NM, Alrasheed NM, Bassiouni YA, Hasan IH, Alamin MA, Alajmi HN, Mahmoud AM (2018) Simvastatin ameliorates diabetic nephropathy by attenuating oxidative stress and apoptosis in a rat model of streptozotocin-induced type 1 diabetes. Biomed Pharmacother 105:290–298. https://doi.org/10.1016/j.biopha.2018.05.130

    Article  CAS  Google Scholar 

  27. Wallace SM, Mäki-Petäjä KM, Cheriyan J, Davidson EH, Cherry L, McEniery CM, Sattar N, Wilkinson IB et al (2010) Simvastatin prevents inflammation-induced aortic stiffening and endothelial dysfunction. Br J Clin Pharmacol 70(6):799–806. https://doi.org/10.1111/j.1365-212-5.2010.03745.x

  28. Wang C, Chen T, Li G, Zhou L, Sha S, Chen L (2015) Simvastatin prevents β-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 97:122–132. https://doi.org/10.1016/j.neuropharm.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  29. Yan J, Liu A, Fan H, Qiao L, Wu J, Shen M, Lai X, Huang J (2020) Simvastatin improves behavioral disorders and hippocampal inflammatory reaction by NMDA-mediated anti-inflammatory function in MPTP-treated mice. Cell Mol Neurobiol 40:1155–1164. https://doi.org/10.1007/s10571-020-00804-7

    Article  CAS  PubMed  Google Scholar 

  30. Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S (2018) Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci 11:165. https://doi.org/10.3389/fnmol.2018.00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SH, Choi NY, Yu HJ, Park J, Choi H, Lee KY, Huh YM, Lee YJ et al (2016) Atorvastatin protects NSC-34 motor neurons against oxidative stress by activating PI3K, ERK and free radical scavenging. Mol Neurobiol 53(1):695–705. https://doi.org/10.1007/s12035-014-9030-0

  32. Maalouly G, Hajal J, Saliba Y, Rached G, Layoun H, Smayra V, Sleilaty G, Irani C et al (2020) Beneficial role of simvastatin in experimental autoimmune myositis. Int Immunopharmacol 79:106051. https://doi.org/10.1016/j.intimp.2019.106051

  33. Whitehead NP, Kim MJ, Bible KL, Adams ME, Froehner SC (2015) A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc Natl Acad Sci U S A 112(41):12864–12869. https://doi.org/10.1073/pnas.1509-536112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis ME, Korn MA, Gumucio JP, Harning JA, Saripalli AL, Bedi A, Mendias CL (2015) Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J Shoulder Elb Surg 24(2):280–287. https://doi.org/10.1016/j.jse.2014.06.048

    Article  Google Scholar 

  35. Su XW, Nandar W, Neely EB, Simmons Z, Connor JR (2016) Statins accelerate disease progression and shorten survival in SOD1(G93A) mice. Muscle Nerve 54(2):284–291. https://doi.org/10.1002/mus.25048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Irwin JC, Fenning AS, Ryan KR, Vella RK (2018) Validation of a clinically-relevant rodent model of statin-associated muscle symptoms for use in pharmacological studies. Toxicol Appl Pharmacol 360:78–87. https://doi.org/10.1016/j.taap.2018.09.040

    Article  CAS  PubMed  Google Scholar 

  37. Golomb BA, Verden A, Messner AK, Koslik HJ, Hoffman KB (2018) Amyotrophic lateral sclerosis associated with statin use: a disproportionality analysis of the FDA’s adverse event reporting system. Drug Saf 41(4):403–413. https://doi.org/10.1007/s40264-017-0620-4

    Article  CAS  PubMed  Google Scholar 

  38. Colman E, Szarfman A, Wyeth J, Mosholder A, Jillapalli D, Levine J, Avigan M (2008) An evaluation of a data mining signal for amyotrophic lateral sclerosis and statins detected in FDA’s spontaneous adverse event reporting system. Pharmacoepidemiol Drug Saf 17(11):1068–1076. https://doi.org/10.1002/pds.1643

    Article  PubMed  Google Scholar 

  39. Borges IB, Shinjo SK (2019) Safety of statin drugs in patients with dyslipidemia and stable systemic autoimmune myopathies. Rheumatol Int 39(2):311–316. https://doi.org/10.1007/s00296-018-4215-x

    Article  CAS  PubMed  Google Scholar 

  40. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775. https://doi.org/10.1126/science.8209258

  41. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31(3):395–405. https://doi.org/10.1016/j.nbd.2008.05.016

  42. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18(9):1865. https://doi.org/10.3390/ijms18091865

    Article  CAS  PubMed Central  Google Scholar 

  43. Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Method 75:13–18. https://doi.org/10.1016/j.ymeth.2014.11.021

    Article  CAS  Google Scholar 

  44. Britto FA, Gnimassou O, De Groote E, Balan E, Warnier G, Everard A, Cani PD, Deldicque L (2020) Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human. FASEB J 34(1):1885–1900. https://doi.org/10.1096/fj.201902-244R

    Article  CAS  PubMed  Google Scholar 

  45. Juban G, Saclier M, Yacoub-Youssef H, Kernou A, Arnold L, Boisson C, Ben Larbi S, Magnan M et al (2018) AMPK activation regulates LTBP4-dependent TGF-beta1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep 25(8):2163–2176 e2166. https://doi.org/10.1016/j.celrep.-2018.10.077

  46. Lee DE, Bareja A, Bartlett DB, White JP (2019) Autophagy as a therapeutic target to enhance aged muscle regeneration. Cells 8 (2). doi:https://doi.org/10.3390/cells8020183

  47. Fan Y, Cheng Y, Li Y, Chen B, Wang Z, Wei T, Zhang H, Guo Y et al (2020) Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of CHK1 via activating mTORC1/P70S6K pathway. Circulation. 141:1554–1569. https://doi.org/10.1161/cir-culationaha.119.040747

  48. Cong XX, Gao XK, Rao XS, Wen J, Liu XC, Shi YP, He MY, Shen WL et al (2020) Rab5a activates IRS1 to coordinate IGF-AKT-mTOR signaling and myoblast differentiation during muscle regeneration. Cell Death Differ 27:2344–2362. https://doi.org/10.1038/s41418-020-0508-1

  49. Nefussy B, Hirsch J, Cudkowicz ME, Drory VE (2011) Gender-based effect of statins on functional decline in amyotrophic lateral sclerosis. J Neurol Sci 300:23–27. https://doi.org/10.1016/j.jn-s.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  50. Edwards IR, Star K, Kiuru A (2007) Statins, neuromuscular degenerative disease and an amyotrophic lateral sclerosis-like syndrome: an analysis of individual case safety reports from vigibase. Drug Saf 30(6):515–525. https://doi.org/10.2165/00002018-200730060-00005

    Article  PubMed  Google Scholar 

  51. Freedman DM, Kuncl RW, Cahoon EK, Rivera DR, Pfeiffer RM (2018) Relationship of statins and other cholesterol-lowering medications and risk of amyotrophic lateral sclerosis in the US elderly. Amyotroph Lateral Scler Frontotemporal Degener 19:538–546. https://doi.org/10.1080/21678421.2018.1-511731

    Article  CAS  PubMed  Google Scholar 

  52. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, Sandri M (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670. https://doi.org/10.1038/ncomms7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126:5325–5333. https://doi.org/10.1242/jcs.114041

    Article  CAS  PubMed  Google Scholar 

  54. Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, Mcanally J, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143(1):35–45. https://doi.org/10.1016/j.cell.2010.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raben N, Hill VK, Shea LK, Takikita S, Baum R, Mizushima N, Plotz PH (2008) Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 17(24):3897–3908. https://doi.org/10.1093/hmg/ddn292

    Article  PubMed  PubMed Central  Google Scholar 

  56. Olivan S, Calvo AC, Gasco S, Munoz MJ, Zaragoza P, Osta R (2015) Time-point dependent activation of autophagy and the UPS in SOD1G93A mice skeletal muscle. PLoS One 10(8):e0134830. https://doi.org/10.1371/journal.pone.0134830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qi W, Yan L, Liu Y, Zhou X, Li R, Wang Y, Bai L, Chen J et al (2019) Simvastatin aggravates impaired autophagic flux in NSC34-hSOD1G93A cells through inhibition of geranylgeranyl pyrophosphate synthesis. Neuroscience 409:130–141. https://doi.org/10.1016/j.neuroscience.2019.04.034

  58. Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, D'Amico A, Bertini E et al (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23(11):1839–1849. https://doi.org/10.1038/cdd.2016.70

  59. Manzano R, Toivonen JM, Calvo AC, Olivan S, Zaragoza P, Rodellar C, Montarras D, Osta R (2013) Altered in vitro proliferation of mouse SOD1-G93A skeletal muscle satellite cells. Neurodegener Dis 11(3):153–164. https://doi.org/10.1159/000338061

    Article  CAS  PubMed  Google Scholar 

  60. Foltz SJ, Modi JN, Melick GA, Abousaud MI, Luan J, Fortunato MJ, Beedle AM (2016) Abnormal skeletal muscle regeneration plus mild alterations in mature fiber type specification in Fktn-deficient dystroglycanopathy muscular dystrophy mice. PLoS One 11(1):e0147049. https://doi.org/10.1371/journal.Pone.0-147049

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C (2015) Developmental myosins: expression patterns and functional significance. Skelet Muscle 5:22. https://doi.org/10.1186/s13395-015-0046-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141(1):24–40. https://doi.org/10.1016/-0012-1606(90)90099-5

    Article  CAS  PubMed  Google Scholar 

  63. Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, Lomo T (2005) “Fast” and “slow” muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol 562(Pt 3):847–857. https://doi.org/10.1113/jphysiol.2004.073684

    Article  CAS  PubMed  Google Scholar 

  64. Broch-Lips M, Pedersen TH, Riisager A, Schmitt-John T, Nielsen OB (2013) Neuro-muscular function in the wobbler murine model of primary motor neuronopathy. Exp Neurol 248:406–415. https://doi.org/10.1016/j.expneurol.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  65. Peggion C, Massimino ML, Biancotto G, Angeletti R, Reggiani C, Sorgato MC, Bertoli A, Stella R (2017) Absolute quantification of myosin heavy chain isoforms by selected reaction monitoring can underscore skeletal muscle changes in a mouse model of amyotrophic lateral sclerosis. Anal Bioanal Chem 409(8):2143–2153. https://doi.org/10.1007/s00216-016-0160-2

    Article  CAS  PubMed  Google Scholar 

  66. Mendler L, Pinter S, Kiricsi M, Baka Z, Dux L (2008) Regeneration of reinnervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype. J Histochem Cytochem 56(2):111–123. https://doi.org/10.1369/jhc.7A-7322.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee YS, Lin CY, Caiozzo VJ, Robertson RT, Yu J, Lin VW (2007) Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. J Appl Physiol (1985) 103(5):1808–1814. https://doi.org/10.1152/japplphysiol.00588.2007

    Article  CAS  Google Scholar 

  68. Matsuura T, Li Y, Giacobino JP, Fu FH, Huard J (2007) Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury. J Orthop Res 25(11):1534–1540. https://doi.org/10.1002/j-or.20451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Weisong Duan, HongranWu, and Zhongyao Li for their suggestions and technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC; 81871001) and the Key Project of Technical Health Research and Achievement Transformation of Hebei Provincial Department of Health (zh2018004) and Training Project for Professional Leaders of Hebei Provincial Department of Finance.

Author information

Authors and Affiliations

Authors

Contributions

YL and RL conceptualised and designed the experiments. YW, LB, SL, YW, and QL performed all the experiments. YW and RL analysed and interpreted the data. YL, RL, and YW wrote the manuscript.

Corresponding authors

Correspondence to Rui Li or Yaling Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animals were kept in a pathogen-free environment with chow food and clean water. All experiments were approved by the Research Ethics Committee of the Second Hospital of Hebei Medical University (Shijiazhuang, Hebei, People’s Republic of China, Approval No. 2020P023). All applicable institutional and government regulations regarding the use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Simvastatin did not Affect Autophagic Flux in the TA Muscle of WT Mice. a Representative images of immunostaining for p62 and LC3 in Tibialis anterior (TA) muscle of WT and G93ASOD1 mice treated or untreated with simvastatin at end-stage. (b) Western blot analysis of p62 and LC3 in TA muscle of WT and G93ASOD1 mice treated or untreated with simvastatin at end-stage. (c) Graphs show quantification of p62 and LC3 protein relative to GAPDH. (d) Graphs show quantification of p62- or LC3-positive cells at different stage of G93Acon and G93ASim mice. Scale bars, 100 μm. All data are presented as mean ± SEM, n = 5, 3 times independent experiments. Statistical significance was assessed by one-way ANOVA, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. (PNG 1910 kb)

High resolution (TIF 14957 kb)

Fig. S2

Effects of Simvastatin on Inflammation in G93ASOD1 and WT Mice. (a) Western blot showing the expression of TNF-α and Arginase in Tibialis anterior (TA) of WT and G93ASOD1 mice treated or untreated with simvastatin at end-stage. (b) Graphs quantifying TNF-α and Arginase relative to α-tubulin for each group. (c) Western blot showing the expression of TNF-α and Arginase in TA of G93ASOD1 mice with or without simvastatin at different stages. (d) Graphs quantifying TNF-α and Arginase relative to α-tubulin for each group. (e) Representative images of immunostaining for TNF-α in G93ASim and G93Acon mice at day 90, 120, and end-stage. Scale bars, 20 μm. All data are presented as mean ± SEM, n = 5, 3 times independent experiments. Statistical significance was assessed by one-way ANOVA, *P ≤ 0.05, **P ≤ 0.01. (PNG 2033 kb)

High resolution (TIF 14958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bai, L., Li, S. et al. Simvastatin Enhances Muscle Regeneration Through Autophagic Defect-Mediated Inflammation and mTOR Activation in G93ASOD1 Mice. Mol Neurobiol 58, 1593–1606 (2021). https://doi.org/10.1007/s12035-020-02216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02216-6

Keywords

Navigation