Skip to main content

Advertisement

Log in

Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β1–42-Induced Intracellular Zn2+Dysregulation and Its Defense Strategy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

On the basis of the evidence that rapid intracellular Zn2+ dysregulation by amyloid β1–42 (Aβ1–42) in the normal hippocampus transiently induces cognitive decline, here we report preferential neurodegeneration in the dentate gyrus by Aβ1–42-induced intracellular Zn2+ dysregulation and its defense strategy. Neurodegeneration was preferentially observed in the dentate granule cell layer in the hippocampus after a single Aβ1–42 injection into the lateral ventricle but not in the CA1 and CA3 pyramidal cell layers, while intracellular Zn2+ dysregulation was extensively observed in the hippocampus in addition to the dentate gyrus. Neurodegeneration in the dentate granule cell layer was rescued after co-injection of extracellular and intracellular Zn2+ chelators, i.e., CaEDTA and ZnAF-2DA, respectively. Aβ1–42-induced cognitive impairment was also rescued by co-injection of CaEDTA and ZnAF-2DA. Pretreatment with dexamethasone, an inducer of metalothioneins, Zn2+-binding proteins rescued neurodegeneration in the dentate granule cell layer and cognitive impairment via blocking the intracellular Zn2+ dysregulation induced by Aβ1–42. The present study indicates that intracellular Zn2+ dysregulation induced by Aβ1–42 preferentially causes neurodegeneration in the dentate gyrus, resulting in hippocampus-dependent cognitive decline. It is likely that controlling intracellular Zn2+ dysregulation, which is induced by the rapid uptake of Zn-Aβ1–42 complexes, is a defense strategy for Alzheimer’s disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  2. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  CAS  PubMed  Google Scholar 

  3. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gómez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qin Y, Tian Y, Han H, Liu L, Ge X, Xue H, Wang T, Zhou L et al (2019) Risk classification for conversion frommild cognitive impairmenttoAlzheimer'sdiseasein primary care. Psychiatry Res 278:19–26

    Article  PubMed  Google Scholar 

  7. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R et al (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    Article  CAS  PubMed  Google Scholar 

  8. Takeda A, Tamano H (2017) Significance of low nanomolar concentration of Zn2+ in artificial cerebrospinal fluid. Mol Neurobiol 54:2477–2482

    Article  CAS  PubMed  Google Scholar 

  9. Tamano H, Nishio R, Shakushi Y, Sasaki M, Koike Y, Osawa M, Takeda A (2017) In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid. Sci Rep 7:42897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeda A, Tamano H (2017) Impact of synaptic Zn2+ dynamics on cognition and its decline. Int J Mol Sci 18:2411

    Article  CAS  PubMed Central  Google Scholar 

  11. Tamano H, Takeda A (2019) Age-dependent modification of intracellular Zn2+-buffering in the hippocampus and its impact. Biol Pharm Bull in press

  12. Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: Routes of entry. J Neurosci 17:9554–9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Phys Cell Physiol 294:C726–C742

    Article  CAS  Google Scholar 

  14. Takeda A, Koike Y, Osawa M, Tamano H (2018) Characteristic of extracellular Zn2+ influx in the middle-aged dentate gyrus and its involvement in attenuation of LTP. Mol Neurobiol 55:2185–2195

    Article  CAS  PubMed  Google Scholar 

  15. Takeda A, Tamano H, Murakami T, Nakada H, Minamino T, Koike Y (2018) Weakened intracellular Zn2+-buffering in the aged dentate gyrus and its involvement in erasure of maintained LTP. Mol Neurobiol 55:3856–3865

    CAS  PubMed  Google Scholar 

  16. Tamano H, Nishio R, Morioka H, Furuhata R, Komata Y, Takeda A (2019) Paraquat as an environmental risk factor in Parkinson's disease accelerates age-related degeneration via rapid influx of extracellular Zn2+ into nigral dopaminergic neurons. Mol Neurobiol 56:7789–7799. https://doi.org/10.1007/s12035-019-01642-5

    Article  CAS  PubMed  Google Scholar 

  17. Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461:916–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kepp KP (2016) Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 143:36–60

    Article  CAS  PubMed  Google Scholar 

  19. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    Article  CAS  PubMed  Google Scholar 

  20. Takeda A, Nakamura M, Fujii H, Uematsu C, Minamino T, Adlard PA, Bush AI, Tamano H (2014) Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit. PLoS One 9:e115923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takeda A, Tamano H, Tempaku M, Sasaki M, Uematsu C, Sato S, Kanazawa H, Datki ZL et al (2017) Extracellular Zn2+ is essential for amyloid β1-42-induced cognitive decline in the normal brain and its rescue. J Neurosci 37:7253–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamano H, Oneta N, Shioya A, Adlard PA, Bush AI, Takeda A (2019) In vivo synaptic activity-independent co-uptakes of amyloid β1-42 and Zn2+ into dentate granule cells in the normal brain. Sci Rep 9:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamano H, Suzuki H, Kobuchi S, Adlard PA, Bush AI, Takeda A (2019) Difference in ability for extracellular Zn2+ influx between human and rat amyloid β1-42 and its significance. NeuroToxicology 72:1–5

    Article  CAS  PubMed  Google Scholar 

  24. Tamano H, Takiguchi M, Shimaya R, Adlard PA, Bush AI, Takeda A (2019) Extracellular Zn2+-independently attenuated LTP by human amyloid β1-40and rat amyloid β1-42. Biochem Bioph Res Co 514:888–892

    Article  CAS  Google Scholar 

  25. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc 124:6555–6562

    Article  CAS  PubMed  Google Scholar 

  26. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N et al (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmued LC, Hopkins KJ (2000) Fluoro-jade B: A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  28. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, de Bem AF, Prediger RD et al (2010) Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β(1-40) administration in mice: Evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 226:274–284

    Article  CAS  PubMed  Google Scholar 

  29. Takeda A, Tamano H, Hashimoto W, Kobuchi S, Suzuki H, Murakami T, Tempaku M, Koike Y et al (2018) Novel defense by metallothionein induction against cognitive decline: From amyloid β1-42-induced excess Zn2+ to functional Zn2+ deficiency. Mol Neurobiol 55:7775–7788

    Article  CAS  PubMed  Google Scholar 

  30. Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD (2005) Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: More of the same? Ann. Neurol. 58:139–142

    CAS  Google Scholar 

  31. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448–6453

    Article  CAS  Google Scholar 

  32. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan Y, Wang C (2006) Abeta42 is more rigid than Abeta40 at the C terminus: Implications for Abeta aggregation and toxicity. J Mol Biol 364:853–862

    Article  CAS  PubMed  Google Scholar 

  34. Fu L, Sun Y, Guo Y, Chen Y, Yu B, Zhang H, Wu J, Yu X et al (2017) Comparison ofneurotoxicityof different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures. J Pept Sci 23:245–251

    Article  CAS  PubMed  Google Scholar 

  35. Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I et al (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J 29:3408–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24:743–750

    Article  CAS  PubMed  Google Scholar 

  37. Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesné S, LaDu MJ et al (2011) Cognitive effects of cell-derived and synthetically derived Aβoligomers. Neurobiol Aging 32:1784–1794

    Article  CAS  PubMed  Google Scholar 

  38. Brouillette J, Caillierez R, Zommer N, Alves-Pires C, Benilova I, Blum D, De Strooper B, Buée L (2012) Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 32:7852–7861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forny-Germano L, Lyra e Silva NM, Batista AF, Brito-Moreira J, Gralle M, Boehnke SE, Coe BC, Lablans A et al (2014) Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci 34:13629–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmid S, Jungwirth B, Gehlert V, Blobner M, Schneider G, Kratzer S, Kellermann K, Rammes G (2017) Intracerebroventricular injection of beta-amyloid in mice is associated with long-term cognitive impairment in the modified hole-board test. Behav Brain Res 324:15–20

    Article  CAS  PubMed  Google Scholar 

  41. Bush AI, Pettingell WH, Multhaup G, de Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL et al (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  42. Bush AI (2013) The metal theory of Alzheimer's disease. J Alzheimers Dis 33:S277–S281

    Article  CAS  PubMed  Google Scholar 

  43. Adlard PA, Bush AI (2018) Metals andAlzheimer's disease: How far have we come in the clinic? J Alzheimers Dis 62:1369–1379

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo J, Yu L, Sun Y, Dong X (2017) Kinetic insights into Zn2+-induced amyloid β-protein aggregation revealed by stopped-flow fluorescence spectroscopy. J Phys Chem B 121:3909–3917

    Article  CAS  PubMed  Google Scholar 

  45. Zhang T, Pauly T, Nagel-Steger L (2018) Stoichiometric Zn2+interferes with the self-association of Aβ42: Insights from size distribution analysis. Int J Biol Macromol 113:631–639

    Article  CAS  PubMed  Google Scholar 

  46. Yamada K, Yabuki C, Seubert P, Schenk D, Hori Y, Ohtsuki S, Terasaki T, Hashimoto T et al (2009) Abeta immunotherapy: Intracerebral sequestration of Abeta by an anti-Abeta monoclonal antibody 266 with high affinity to soluble Abeta. J Neurosci 29:11393–11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abramovitch-Dahan C, Asraf H, Bogdanovic M, Sekler I, Bush AI, Hershfinkel M (2016) Amyloid β attenuates metabotropic zinc sensing receptor, mZnR/GPR39, dependent Ca2+, ERK1/2 and Clusterin signaling in neurons. J Neurochem 139:221–233

    Article  CAS  PubMed  Google Scholar 

  48. Krężel A, Maret W (2006) Zinc buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    Article  CAS  PubMed  Google Scholar 

  49. Krężel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    Article  CAS  PubMed  Google Scholar 

  50. Krężel A, Maret W (2007) Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 129:10911–10921

    Article  CAS  PubMed  Google Scholar 

  51. Krężel A, Maret W (2017) The functions of metamorphic Metallothioneins in zinc and copper metabolism. Int J Mol Sci 18. https://doi.org/10.3390/ijms18061237

  52. Vasák M, Kägi JH (1983) Spectroscopic properties of metallothionein. In: Sigel H (ed) Metal Ions in Biological Systems, vol 15. Marcel Dekker, New York, pp. 213–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamano, H., Takiguchi, M., Tanaka, Y. et al. Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β1–42-Induced Intracellular Zn2+Dysregulation and Its Defense Strategy. Mol Neurobiol 57, 1875–1888 (2020). https://doi.org/10.1007/s12035-019-01853-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01853-w

Keywords

Navigation