Skip to main content

Advertisement

Log in

Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Proper growth of the mammalian cerebral cortex, which is determined by expansion and survival of neural progenitors and mature neurons, is crucial for cognitive functions. Here, we show a role of the dosage of microRNA miR-9 in controlling brain size. Cortical-specific upregulation of miR-9 causes microcephalic defects in mice, due to apoptosis, reduced neural progenitor pool, and decreased neurogenesis. Glial cell-derived neurotrophic factor (GDNF) is a target of miR-9, and protects neural progenitors from miR-9-induced apoptosis. Furthermore, Zika virus (ZIKV) infection in embryonic mouse cortex causes reduced numbers in neural progenitors and newborn neurons, and results in upregulation of miR-9, downregulation of its target GDNF. Our studies indicate an association of altered levels of miR-9 and its target GDNF with microcephaly and ZIKV infection in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woods CG, Parker A (2013) Investigating microcephaly. Arch Dis Child 98:707–713. https://doi.org/10.1136/archdischild-2012-302882

    Article  PubMed  Google Scholar 

  2. Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, Jones KR, Ledent C, Vanderhaeghen P (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435:1244–1250

    Article  CAS  Google Scholar 

  3. Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J (2002) Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann N Y Acad Sci 962:423–437

    Article  CAS  Google Scholar 

  4. Burke RE (2006) GDNF as a candidate striatal target-derived neurotrophic factor for the development of substantia nigra dopamine neurons. J Neural Transm Suppl:41–45

  5. Ladhani SN, O'Connor C, Kirkbride H, Brooks T, Morgan D (2016) Outbreak of Zika virus disease in the Americas and the association with microcephaly, congenital malformations and Guillain-Barre syndrome. Arch Dis Child 101:600–602. https://doi.org/10.1136/archdischild-2016-310590

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Fatima Vasco Aragao M, van der Linden V, Brainer-Lima AM, Coeli RR, Rocha MA, Sobral da Silva P, Durce Costa Gomes de Carvalho M, van der Linden A et al (2016) Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ 353:i1901. https://doi.org/10.1136/bmj.i1901

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–265. https://doi.org/10.1016/j.stem.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818. https://doi.org/10.1126/science.aaf6116

    Article  CAS  PubMed  Google Scholar 

  10. Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18:591–596. https://doi.org/10.1016/j.stem.2016.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J et al (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590. https://doi.org/10.1016/j.stem.2016.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimaraes KP, Benazzato C, Almeida N et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534:267–271. https://doi.org/10.1038/nature18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, Schoggins JW (2016) Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Rep 15:2315–2322. https://doi.org/10.1016/j.celrep.2016.05.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabriel E, Ramani A, Karow U, Gottardo M, Natarajan K, Gooi LM, Goranci-Buzhala G, Krut O et al (2017) Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain Organoids. Cell Stem Cell 20:397–406 e5. https://doi.org/10.1016/j.stem.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–126. https://doi.org/10.1016/j.stem.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  16. Wu KY, Zuo GL, Li XF, Ye Q, Deng YQ, Huang XY, Cao WC, Qin CF et al (2016) Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res 26:645–654. https://doi.org/10.1038/cr.2016.58

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, Tang W, Terskikh AV, Shresta S et al (2016) Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19:593–598. https://doi.org/10.1016/j.stem.2016.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shao Q, Herrlinger S, Yang SL, Lai F, Moore JM, Brindley MA, Chen JF (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143:4127–4136. https://doi.org/10.1242/dev.143768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, Mukherjee S, Tomishima M, Brennand KJ et al (2017) High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21:274–283 e5. https://doi.org/10.1016/j.stem.2017.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, Coppola G, Pearson CA et al (2017) Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 21:517–532. https://doi.org/10.1016/j.celrep.2017.09.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, Ji X, Xu YP et al (2017) A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358:933–936. https://doi.org/10.1126/science.aam7120

    Article  CAS  PubMed  Google Scholar 

  22. Yoon KJ, Song G, Qian X, Pan J, Xu D, Rho HS, Kim NS, Habela C et al (2017) Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21:349–358 e6. https://doi.org/10.1016/j.stem.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS, Sanford TJ, Sweeney TR, Krishna BA et al (2017) Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357:83–88. https://doi.org/10.1126/science.aam9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onorati M, Li Z, Liu F, Sousa AM, Nakagawa N, Li M, Dell'Anno MT, Gulden FO et al (2016) Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 16:2576–2592. https://doi.org/10.1016/j.celrep.2016.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN et al (2016) Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 44:8610–8620. https://doi.org/10.1093/nar/gkw765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L (2012) MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19:1573–1581

    Article  CAS  Google Scholar 

  27. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44:359–373

    Article  CAS  Google Scholar 

  28. Zhang H, Shykind B, Sun T (2013) Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 6:196

    Article  Google Scholar 

  29. Kawase-Koga Y, Otaegi G, Sun T (2009) Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn 238:2800–2812

    Article  Google Scholar 

  30. De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    Article  Google Scholar 

  31. Kawase-Koga Y, Low R, Otaegi G, Pollock A, Deng H, Eisenhaber F, Maurer-Stroh S, Sun T (2010) RNAase-III enzyme dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 123:586–594

    Article  CAS  Google Scholar 

  32. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22:6309–6314

    Article  CAS  Google Scholar 

  33. Rakic P (2005) Less is more: progenitor death and cortical size. Nat Neurosci 8:981–982

    Article  CAS  Google Scholar 

  34. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  Google Scholar 

  35. Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251

    Article  CAS  Google Scholar 

  36. Bian S, Hong J, Li Q, Schebelle L, Pollock A, Knauss JL, Garg V, Sun T (2013) MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse Neocortex. Cell Rep 3:1398–1406

    Article  CAS  Google Scholar 

  37. Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–14936

    Article  CAS  Google Scholar 

  38. Bian S, Xu TL, Sun T (2013) Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 23:928–934. https://doi.org/10.1016/j.conb.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  39. Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303–309

    Article  CAS  Google Scholar 

  40. Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11:641–648

    Article  CAS  Google Scholar 

  41. Coolen M, Thieffry D, Drivenes O, Becker TS, Bally-Cuif L (2012) miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. Dev Cell 22:1052–1064

    Article  CAS  Google Scholar 

  42. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 20:19–32

    Article  CAS  Google Scholar 

  43. Otaegi G, Pollock A, Hong J, Sun T (2011) MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 31:809–818

    Article  CAS  Google Scholar 

  44. Luxenhofer G, Helmbrecht MS, Langhoff J, Giusti SA, Refojo D, Huber AB (2014) MicroRNA-9 promotes the switch from early-born to late-born motor neuron populations by regulating Onecut transcription factor expression. Dev Biol 386:358–370. https://doi.org/10.1016/j.ydbio.2013.12.023

    Article  CAS  PubMed  Google Scholar 

  45. Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, Barnes RH 2nd, Hong J et al (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A 109:E423–E431. https://doi.org/10.1073/pnas.1111780109

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28:10415–10421

    Article  CAS  Google Scholar 

  47. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422

    Article  CAS  Google Scholar 

  48. Clovis YM, Enard W, Marinaro F, Huttner WB, De Pietri Tonelli D (2012) Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139:3332–3342

    Article  CAS  Google Scholar 

  49. Gao FB (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5:25

    Article  Google Scholar 

  50. Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220. https://doi.org/10.3389/fncel.2013.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653–660. https://doi.org/10.1016/S1473-3099(16)00095-5

    Article  PubMed  Google Scholar 

  52. Martines RB, Bhatnagar J, Keating MK, Silva-Flannery L, Muehlenbachs A, Gary J, Goldsmith C, Hale G et al (2016) Notes from the field: evidence of Zika virus infection in brain and placental tissues from two congenitally infected newborns and two fetal losses—Brazil, 2015. MMWR Morb Mortal Wkly Rep 65:159–160. https://doi.org/10.15585/mmwr.mm6506e1

    Article  PubMed  Google Scholar 

  53. Ventura CV, Maia M, Bravo-Filho V, Gois AL, Belfort R Jr (2016) Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 387:228. https://doi.org/10.1016/S0140-6736(16)00006-4

    Article  PubMed  Google Scholar 

  54. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K et al (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958. https://doi.org/10.1056/NEJMoa1600651

    Article  CAS  PubMed  Google Scholar 

  55. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, Ge J, Wang S et al (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671. https://doi.org/10.1016/j.stem.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  Google Scholar 

  57. Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148

    Article  CAS  Google Scholar 

  58. Perrelet D, Ferri A, Liston P, Muzzin P, Korneluk RG, Kato AC (2002) IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat Cell Biol 4:175–179. https://doi.org/10.1038/ncb751

    Article  CAS  PubMed  Google Scholar 

  59. Deng YQ, Zhang NN, Li XF, Wang YQ, Tian M, Qiu YF, Fan JW, Hao JN et al (2017) Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat Commun 8:1648. https://doi.org/10.1038/s41467-017-01923-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hong J, Zhang H, Kawase-Koga Y, Sun T (2013) MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Front Cell Neurosci 7:151

    PubMed  PubMed Central  Google Scholar 

  61. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1:1552–1558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Sun laboratory for their valuable discussions and advice. This work was supported by an award from the Hirschl/Weill-Caulier Trust (T. S.), an R01-MH083680 grant from the NIH/NIMH (T. S.) and the National Natural Science Foundation of China (81471152, 31771141 and 81701132).

Author information

Authors and Affiliations

Authors

Contributions

G.O., Z.X., and T.S. designed the experiments. H.Z., Y.C., L.Z., S.K., G.O., Z.Z., T.M., and C.L. performed the experiments. H.Z., Y.C., L.Z., G.O., Z.Z, Y.N., C.Q., and T.S. analyzed and interpreted the data. T.S. wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Tao Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chang, Y., Zhang, L. et al. Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Mol Neurobiol 56, 4072–4085 (2019). https://doi.org/10.1007/s12035-018-1358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1358-4

Keywords

Navigation