Skip to main content

Advertisement

Log in

Chloroquine Restores Ganglioside Homeostasis and Improves Pathological and Behavioral Outcomes Post-stroke in the Rat

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Perturbations of ganglioside homeostasis have been observed following stroke whereby toxic simple gangliosides GM2 and GM3 accumulate, while protective complex species GM1 and GD1 are reduced. Thus, there is a need for therapeutic interventions which can prevent ganglioside dysregulation after stroke. A pharmacological intervention using chloroquine was selected for its transient lysosomotropic properties which disrupt the activity of catabolic ganglioside enzymes. Chloroquine was administered both in vitro (0.1 μM), to primary cortical neurons exposed to GM3 toxicity, and in vivo (45 mg/kg i.p.), to 3-month-old male Wistar rats that underwent a severe stroke injury. Chloroquine was administered for seven consecutive days beginning 3 days prior to the stroke injury. Gangliosides were examined using MALDI imaging mass spectrometry at 3 and 21 days after the injury, and motor deficits were examined using the ladder task. Chloroquine treatment prevented ganglioside dysregulation 3 days post-stroke and partially prevented complex ganglioside depletion 21 days post-stroke. Exogenous GM3 was found to be toxic to primary cortical neurons which was protected by chloroquine treatment. Motor deficits were prevented in the forelimbs of stroke-injured rats with chloroquine treatment and was associated with decreased inflammation, neurodegeneration, and an increase in cell survival at the site of injury. Chloroquine administration prevents ganglioside dysregulation acutely, protects against GM3 toxicity in neurons, and is associated with long-term functional and pathological improvements after stroke in the rat. Therefore, targeting lipid dysregulation using lysosomotropic agents such as chloroquine may represent a novel therapeutic avenue for stroke injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15:869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL et al (2014) Global and regional burden of stroke during 1990-2010: findings from the global burden of disease study 2010. Lancet 383:245–255. https://doi.org/10.1016/S0140-6736(13)61953-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raychev R, Saver JL (2012) Mechanical thrombectomy devices for treatment of stroke. Neurol Clin Pract 2:231–235. https://doi.org/10.1212/CPJ.0b013e31826af206

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Fang X, Zhou Y, Deng X, Lu Y, Li J, Li S, Wang B et al (2015) The possible damaged mechanism and the preventive effect of monosialotetrahexosylganglioside in a rat model of cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc Dis 24:1471–1478. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.02.008

    Article  PubMed  Google Scholar 

  5. Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KKC, Cechetto DF, Whitehead SN (2015) Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of Aβ toxicity and stroke. PLoS One 10:e0130364. https://doi.org/10.1371/journal.pone.0130364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakatsuji Y, Miller RH (2001) Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol 168:290–299. https://doi.org/10.1006/exnr.2000.7602

    Article  CAS  PubMed  Google Scholar 

  7. Chung TW, Kim SJ, Choi HJ, Kim KJ, Kim MJ, Kim SH, Lee HJ, Ko JH et al (2009) Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology 19:229–239. https://doi.org/10.1093/glycob/cwn114

    Article  CAS  PubMed  Google Scholar 

  8. Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is antiangiogenic in malignant brain cancer. J Oncol 2010:1–8. https://doi.org/10.1155/2010/961243

    Article  CAS  Google Scholar 

  9. Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG, Kim CH (2006) Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression—transcriptional induction of p21WAF1and p27kip1by inhibition of PI-3K/AKT pathway. Glycobiology 16:573–583. https://doi.org/10.1093/glycob/cwj105

    Article  CAS  PubMed  Google Scholar 

  10. Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK (2009) Ganglioside GM3 and its biological functions. Biochem 74:235–249. https://doi.org/10.1134/S0006297909030018

    Article  CAS  Google Scholar 

  11. Sohn H, Kim YS, Kim HT, Kim CH, Cho EW, Kang HY, Kim NS, Kim CH et al (2006) Ganglioside GM3 is involved in neuronal cell death. FASEB J 20:1248–1250. https://doi.org/10.1096/fj.05-4911fje

    Article  CAS  PubMed  Google Scholar 

  12. Whitehead SN, Chan KHN, Gangaraju S, Slinn J, Li J, Hou ST (2011) Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One 6:e20808. https://doi.org/10.1371/journal.pone.0020808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woods AS, Colsch B, Jackson SN, Post J, Baldwin K, Roux A, Hoffer B, Cox BM et al (2013) Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci 4:594–600. https://doi.org/10.1021/cn300216h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carolei A, Fieschi C, Bruno R (1991) Monosialoganglioside GM1 in cerebral ischemia. Cerebrovasc Brain Metab Rev 3:134–157

    CAS  PubMed  Google Scholar 

  15. Karpiak S, Li Y, Mahadik S (1987) Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: Protection of membrane function. Stroke 18:184–187. https://doi.org/10.1161/01.STR.18.1.184

    Article  CAS  PubMed  Google Scholar 

  16. Kharlamov A, Zivkovic I, Polo A, Armstrong DM, Costa E, Guidotti A (1994) LIGA20, a lyso derivative of ganglioside GM1, given orally after cortical thrombosis reduces infarct size and associated cognition deficit. Proc Natl Acad Sci 91:6303–6307. https://doi.org/10.1073/pnas.91.14.6303

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Tian J, Long MK et al (2016) Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS One 11:1–13. https://doi.org/10.1371/journal.pone.0144219

    Article  CAS  Google Scholar 

  18. Rubovitch V, Zilberstein Y, Chapman J, Schreiber S, Pick CG (2017) Restoring GM1 ganglioside expression ameliorates axonal outgrowth inhibition and cognitive impairments induced by blast traumatic brain injury. Sci Rep 7:41269. https://doi.org/10.1038/srep41269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418. https://doi.org/10.1016/j.tibs.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  20. Lim ST, Esfahani K, Avdoshina V, Mocchetti I (2011) Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology 60:1160–1167. https://doi.org/10.1016/j.neuropharm.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Rabin SJ, Bachis A, Mocchetti I (2002) Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem 277:49466–49472. https://doi.org/10.1074/jbc.M203240200

    Article  CAS  PubMed  Google Scholar 

  22. Argentino C, Sacchetti M, Toni D et al (1989) GM1 ganglioside therapy in acute ischemic stroke. Stroke 20:1143–1149

    Article  CAS  Google Scholar 

  23. Candelise L (2002) Gangliosides for acute ischemic stroke. Stroke 33:2336–2336. https://doi.org/10.1161/01.STR.0000029272.13806.46

    Article  PubMed  Google Scholar 

  24. Hoffbrand B, Bungley P, Oppenheimer S, Sheldon C (1988) Short report trial of ganglioside GM 1 in acute stroke. J Neurol Neurosurg Psychiatry 51:1213–1214

    Article  CAS  Google Scholar 

  25. Lehmeyer JE, Jonston RB (1978) Effect of anti-inflammatory drugs and agents that elevate intracellular cyclic AMP on the release of toxic oxygen metabolites by phagocytes: studies in a model of tissue. Clin Immunol Immunopathol 9:482–490

    Article  CAS  Google Scholar 

  26. Hirata Y, Yamamoto H, Atta MSM, Mahmoud S, Oh-hashi K, Kiuchi K (2011) Chloroquine inhibits glutamate-induced death of a neuronal cell line by reducing reactive oxygen species through sigma-1 receptor. J Neurochem 119:839–847. https://doi.org/10.1111/j.1471-4159.2011.07464.x

    Article  CAS  PubMed  Google Scholar 

  27. Cui G, Ye X, Zuo T, Zhao H, Zhao Q, Chen W, Hua F (2013) Chloroquine pretreatment inhibits toll-like receptor 3 signaling after stroke. Neurosci Lett 548:101–104. https://doi.org/10.1016/j.neulet.2013.02.072

    Article  CAS  PubMed  Google Scholar 

  28. Maes H, Kuchnio A, Peric A, Moens S, Nys K, de Bock K, Quaegebeur A, Schoors S et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26:190–206. https://doi.org/10.1016/j.ccr.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  29. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A 75:3327–3331

    Article  CAS  Google Scholar 

  30. Riboni L, Prinetti A, Bassi R, Tettamanti G (1991) Cerebellar granule cells in culture exhibit a ganglioside-sialidase presumably linked to the plasma membrane. FEBS Lett 287:42–46. https://doi.org/10.1016/0014-5793(91)80012-R

    Article  CAS  PubMed  Google Scholar 

  31. Riboni L, Caminiti A, Bassi R, Tettamanti G (1995) The degradative pathway of gangliosides GM1 and GM2 in Neuro2a cells by sialidase. J Neurochem 64:451–454

    Article  CAS  Google Scholar 

  32. Shacka JJ, Klocke BJ, Roth KA (2006) Autophagy, bafilomycin and cell death: the “A-B-Cs” of plecomacrolide-induced neuroprotection. Autophagy 2:228–230. https://doi.org/10.4161/auto.2703

    Article  CAS  PubMed  Google Scholar 

  33. Whitehead SN, Hachinski VC, Cechetto DF (2005) Interaction between a rat model of cerebral ischemia and ??-amyloid toxicity: inflammatory responses. Stroke 36:107–112. https://doi.org/10.1161/01.STR.0000149627.30763.f9

    Article  CAS  PubMed  Google Scholar 

  34. Whitehead SN, Cheng G, Hachinski VC, Cechetto DF (2007) Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke 38:3245–3250. https://doi.org/10.1161/STROKEAHA.107.492660

    Article  CAS  PubMed  Google Scholar 

  35. Park DH, Wang L, Pittock P, Lajoie G, Whitehead SN (2016) Increased expression of GM1 detected by electrospray mass spectrometry in rat primary embryonic cortical neurons exposed to glutamate toxicity. Anal Chem 88:7844–7852. https://doi.org/10.1021/acs.analchem.6b01940

    Article  CAS  PubMed  Google Scholar 

  36. Caughlin S, Park DH, Yeung KK-C, Cechetto DF, Whitehead SN (2017) Sublimation of DAN matrix for the detection and visualization of gangliosides in rat brain tissue for MALDI imaging mass spectrometry. J Vis Exp 2017:1–8. https://doi.org/10.3791/55254

    Article  CAS  Google Scholar 

  37. Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, Hirata K, Furukawa K, Furukawa K et al (2007) Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55:746–757. https://doi.org/10.1002/glia.20503

    Article  PubMed  Google Scholar 

  38. Sun J, Shaper NL, Itonori S et al (2004) Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology 14:851–857. https://doi.org/10.1093/glycob/cwh107

    Article  CAS  PubMed  Google Scholar 

  39. Schnaar RL (2010) Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 584:1741–1747. https://doi.org/10.1016/j.febslet.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  40. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179. https://doi.org/10.1016/S0165-0270(02)00012-2

    Article  PubMed  Google Scholar 

  41. Ginsberg MD (2016) Expanding the concept of neuroprotection for acute ischemic stroke: The pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol 145–146:46–77. https://doi.org/10.1016/j.pneurobio.2016.09.002

    Article  PubMed  Google Scholar 

  42. Lipartiti M, Seren MS, Lazzaro A et al (1990) Monosialoganglioside effects following cerebral ischemia: Relationship with anti-neuronotoxic and pro-neuronotrophic effects. Acta Neurobiol Exp (Wars) 50:489–494

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dilani Logan and Justin Kim for their assistance in the quantification of MALDI data and behavioral analyses.

Funding

This work was funded by NSERC, CIHR, CCNA operating grants and a CFI equipment grant to SNW, an NSERC operating grant to KK-CY, a CIHR emerging team grant to DFC and SNW, and an NSERC PGS-D award to SC.

Author information

Authors and Affiliations

Authors

Contributions

SC conceptualized experiments, performed all MALDI-IMS, primary cortical neuron, and behavior experiments, analyzed the data, and wrote the manuscript. LW performed cell extraction and plating of all primary cortical neurons. JH performed and analyzed all immunohistochemistry experiments. DFC and KY conceptualized experiments and edited the manuscript. SNW conceptualized experiments and edited the manuscript and figures.

Corresponding author

Correspondence to Shawn N. Whitehead.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caughlin, S., Hepburn, J., Liu, Q. et al. Chloroquine Restores Ganglioside Homeostasis and Improves Pathological and Behavioral Outcomes Post-stroke in the Rat. Mol Neurobiol 56, 3552–3562 (2019). https://doi.org/10.1007/s12035-018-1317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1317-0

Keywords

Navigation