Skip to main content

Advertisement

Log in

Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Obese individuals exhibit altered circulating levels of adipokines, the proteins secreted by adipose tissue to mediate tissue cross-talk and regulate appetite and energy expenditure. The effect of adipokines on neuronal glucose metabolism, however, remains largely unknown. Two adipokines produced in adipose tissue, adiponectin and resistin, can gain access to the central nervous system (CNS), and their levels in the cerebrospinal fluid (CSF) are altered in obesity. We hypothesized that dysregulated adipokines in the CNS may underlie the reported link between obesity and higher risk of neurological disorders like Alzheimer’s disease (AD), by affecting glucose metabolism in hippocampal neurons. Using cultured primary rat hippocampal neurons and mouse hippocampus slices, we show that recombinant adiponectin and resistin, at a concentration found in the CSF, have opposing effects on glucose metabolism. Adiponectin enhanced glucose uptake, glycolytic rate, and ATP production through an AMP-activated protein kinase (AMPK)-dependent mechanism; inhibiting AMPK abrogated the effects of adiponectin on glucose uptake and utilization. In contrast, resistin reduced glucose uptake, glycolytic rate, and ATP production, in part, by inhibiting hexokinase (HK) activity in hippocampal neurons. These data suggest that altered CNS levels of adipokines in the context of obesity may impact glucose metabolism in hippocampal neurons, brain region involved in learning and memory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gustafson DR (2012) Adiposity and cognitive decline: Underlying mechanisms. J Alzheimers Dis 30:S97–S112. https://doi.org/10.3233/JAD-2012-120487

    Article  PubMed  Google Scholar 

  2. Rios JA, Cisternas P, Arrese M et al (2014) Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 121:125–146. https://doi.org/10.1016/j.pneurobio.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  3. Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar L, Barja S, Vio CP et al (2015) Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim Biophys Acta Mol Basis Dis 1852:2379–2390. https://doi.org/10.1016/j.bbadis.2015.08.016

    Article  CAS  Google Scholar 

  4. Hruby A, Hu FB (2016) HHS public access. Pharmacoeconomics 33:673–689. https://doi.org/10.1007/s40273-014-0243-x.The

    Article  Google Scholar 

  5. Apovian CM (2016) The obesity epidemic—understanding the disease and the treatment. N Engl J Med 374:177–179. https://doi.org/10.1056/NEJMe1514957

    Article  PubMed  Google Scholar 

  6. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, Ben-Ami Shor D, Tzur D et al (2016) Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med 374:2430–2440. https://doi.org/10.1056/NEJMoa1503840

    Article  PubMed  Google Scholar 

  7. Trayhurn P, Bing C, Wood IS (2006) The WALTHAM International Nutritional Sciences Symposia Adipose tissue and adipokines—energy regulation from the society1935–1939

  8. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta RK, Rosen ED, Spiegelman BM (2011) Identifying novel transcriptional components controlling energy metabolism. Cell Metab 14:739–745. https://doi.org/10.1016/j.cmet.2011.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36:461–470. https://doi.org/10.1016/j.tips.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  11. Kos K, Harte AL, Da Silva NF et al (2007) Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 92:1129–1136. https://doi.org/10.1210/jc.2006-1841

    Article  CAS  PubMed  Google Scholar 

  12. Kusminski CM, McTernan PG, Schraw T et al (2007) Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50:634–642. https://doi.org/10.1007/s00125-006-0577-9

    Article  CAS  PubMed  Google Scholar 

  13. Kiliaan AJ, Arnoldussen IAC, Gustafson DR (2014) Adipokines: a link between obesity and dementia? Lancet Neurol 13:913–923. https://doi.org/10.1016/S1474-4422(14)70085-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bischof GN, Park DC (2015) Obesity and aging: consequences for cognition, brain structure, and brain function. Psychosom Med 77:697–709. https://doi.org/10.1097/PSY.0000000000000212.Obesity

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ingelsson E, Risérus U, Berne C, Frystyk J, Flyvbjerg A, Axelsson T, Lundmark P, Zethelius B (2006) Adiponectin and risk of congestive heart failure. J Am Med Assoc 295:1772–1774

    CAS  Google Scholar 

  16. Yang Y, Hu W, Jiang S, Wang B, Li Y, Fan C, di S, Ma Z et al (2015) The emerging role of adiponectin in cerebrovascular and neurodegenerative diseases. Biochim Biophys Acta 1852:1887–1894. https://doi.org/10.1016/j.bbadis.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  17. Song J, Choi S, Kim BC (2017) Adiponectin regulates the polarization and function of microglia via ppar- γ signaling under amyloid β toxicity. Front Cell Neurosci 11:64. https://doi.org/10.3389/fncel.2017.00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE (2006) Brain adipocytokine action and metabolic regulation. Diabetes 55:145–154. https://doi.org/10.2337/db06-S018

    Article  CAS  Google Scholar 

  19. Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: More than just another fat cell hormone? Diabetes Care 26:2442–2450

    Article  CAS  PubMed  Google Scholar 

  20. Sowers JR (2008) Endocrine functions of adipose tissue: focus on adiponectin. Clin Cornerstone 9:32–40. https://doi.org/10.1016/S1098-3597(08)60026-5

    Article  PubMed  Google Scholar 

  21. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946. https://doi.org/10.1038/90984

    Article  CAS  PubMed  Google Scholar 

  22. Zhao L, Fu Z, Wu J, Aylor KW, Barrett EJ, Cao W, Liu Z (2015) Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses. J Physiol 593:4067–4079. https://doi.org/10.1113/JP270371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muse E, Lam T, Scherer P, Rossetti L (2007) Hypothalamic resistin induces hepatic insulin resistance. J Clin Invest 117:1670–1678. https://doi.org/10.1172/JCI30440DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steppan CM, Lazar MA (2004) The current biology of resistin. J Intern Med 255:439–447. https://doi.org/10.1111/j.1365-2796.2004.01306.x

    Article  CAS  PubMed  Google Scholar 

  25. Rajala MW, Obici S, Scherer PE, Rossetti L (2003) Adipose-derived resistin and gut-derived resistin-like molecule? Selectively impair insulin action on glucose production. J Clin Invest 111:225–230. https://doi.org/10.1172/JCI200316521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steppan CM, Bailey ST, Bhat S et al (2001) News/The hormone resistin links obesity to diabetes. Nature 409(6818):307–312

    Article  CAS  PubMed  Google Scholar 

  27. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312. https://doi.org/10.1038/35053000

    Article  CAS  PubMed  Google Scholar 

  28. Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG et al (2001) A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci 98:502–506. https://doi.org/10.1073/pnas.98.2.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  30. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. https://doi.org/10.1016/j.neuron.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  31. Cisternas P, Inestrosa NC (2017) Brain glucose metabolism: role of Wnt signaling in the metabolic impairment in Alzheimer’s disease. Neurosci Biobehav Rev 80:316–328. https://doi.org/10.1016/j.neubiorev.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  32. Emmerzaal TL, Kiliaan AJ, Gustafson DR (2015) 2003-2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis 43:739–755. https://doi.org/10.3233/JAD-141086

    Article  PubMed  Google Scholar 

  33. Arrazola MS, Varela-Nallar L, Colombres M et al (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221:658–667. https://doi.org/10.1002/jcp.21902

    Article  CAS  PubMed  Google Scholar 

  34. Cerpa W, Farias GG, Godoy JA et al (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3. https://doi.org/10.1186/1750-1326-5-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cisternas P, Salazar P, Silva-Álvarez C, Barros LF, Inestrosa NC (2016) Activation of Wnt signaling in cortical neurons enhances glucose utilization through glycolysis. J Biol Chem 291:25950–25964. https://doi.org/10.1074/jbc.M116.735373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cisternas P, Silva-Alvarez C, Martínez F et al (2014) The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. J Neurochem 129:663–671. https://doi.org/10.1111/jnc.12663

    Article  CAS  PubMed  Google Scholar 

  37. Barros LF, Bittner CX, Loaiza A et al (2009) Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. J Neurochem 109(Suppl):94–100. https://doi.org/10.1111/j.1471-4159.2009.05885.x

    Article  CAS  PubMed  Google Scholar 

  38. Herrero-Mendez A, Almeida A, Fernandez E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752. https://doi.org/10.1038/ncb1881

    Article  CAS  PubMed  Google Scholar 

  39. Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: Impact on neuronal survival. Biochim Biophys Acta Bioenerg 1777:789–793. https://doi.org/10.1016/j.bbabio.2008.04.011

    Article  CAS  Google Scholar 

  40. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529. https://doi.org/10.1093/hmg/ddr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moreno-Navarrete JM, Ortega FJ, Rodríguez-Hermosa JI et al (2011) OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes 60:168–176. https://doi.org/10.2337/db10-0805

    Article  CAS  PubMed  Google Scholar 

  42. Stow LR, Jacobs ME, Wingo CS, Cain BD (2016) Endothelin—1 gene regulation. FASEB J 25:16–28. https://doi.org/10.1096/fj.10

    Article  Google Scholar 

  43. Thurley K, Herbst C, Wesener F, Koller B, Wallach T, Maier B, Kramer A, Westermark PO (2017) Principles for circadian orchestration of metabolic pathways. Proc Natl Acad Sci 114:1572–1577. https://doi.org/10.1073/pnas.1613103114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varela-Nallar L, Parodi J, Farias GG, Inestrosa NC (2012) Wnt-5a is a synaptogenic factor with neuroprotective properties against Abeta toxicity. Neurodegener Dis 10:23–26. https://doi.org/10.1159/000333360000333360

    Article  CAS  PubMed  Google Scholar 

  45. Chen G, Chen KS, Knox J et al (2000) A learning de ® cit related to age and b -amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979

    Article  CAS  PubMed  Google Scholar 

  46. Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12:e426–e437. https://doi.org/10.1111/j.1467-789X.2010.00825.x

    Article  CAS  PubMed  Google Scholar 

  47. Jauch-Chara K, Oltmanns KM (2014) Obesity—a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol 114:4–101. https://doi.org/10.1016/j.pneurobio.2013.12.001

    Article  Google Scholar 

  48. Whitmer RA, Gunderson EP, Quesenberry CP Jr et al (2007) Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res 4:103–109. https://doi.org/10.2174/156720507780362047

    Article  CAS  PubMed  Google Scholar 

  49. Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76:1568–1574. https://doi.org/10.1212/WNL.0b013e3182190d09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashrafian H, Harling L, Darzi A, Athanasiou T (2013) Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions? Metab Brain Dis 28:341–353. https://doi.org/10.1007/s11011-013-9412-4

    Article  PubMed  Google Scholar 

  51. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448–1454. https://doi.org/10.1161/01.CIR.0000158483.13093.9D

    Article  PubMed  Google Scholar 

  52. Bhat NR (2010) Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators. J Neurochem 115:551–562. https://doi.org/10.1111/j.1471-4159.2010.06978.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitchell AC, Leak RK, Zigmond MJ, Cameron JL, Mirnics K (2012) Gene transcripts associated with BMI in the motor cortex and caudate nucleus of calorie restricted rhesus monkeys. Genomics 99:144–151. https://doi.org/10.1016/j.ygeno.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  54. Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. Biochim Biophys Acta Gen Subj 1790:1117–1123. https://doi.org/10.1016/j.bbagen.2009.01.008

    Article  CAS  Google Scholar 

  55. Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 9:1–14. https://doi.org/10.1186/1742-2094-9-199

    Article  CAS  Google Scholar 

  56. Gustafson DR (2010) Adiposity hormones and dementia. J Neurol Sci 299:30–34. https://doi.org/10.1016/j.jns.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  57. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68. https://doi.org/10.1016/j.cmet.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  58. Thundyil J, Pavlovski D, Sobey CG, Arumugam TV (2012) Adiponectin receptor signalling in the brain. Br J Pharmacol 165:313–327. https://doi.org/10.1111/j.1476-5381.2011.01560.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ng RCL, Cheng OY, Jian M, Kwan JSC, Ho PWL, Cheng KKY, Yeung PKK, Zhou LL et al (2016) Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 11:71. https://doi.org/10.1186/s13024-016-0136-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng RCL, Chan KH (2017) Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci 18:1–13. https://doi.org/10.3390/ijms18030592

    Article  CAS  Google Scholar 

  61. Giordano V, Peluso G, Iannuccelli M, Benatti P, Nicolai R, Calvani M (2007) Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochem Res 32:555–567

    Article  CAS  PubMed  Google Scholar 

  62. Benomar Y, Gertler A, De Lacy P et al (2013) Central resistin overexposure induces insulin resistance through toll-like receptor 4. Diabetes 62:102–144. https://doi.org/10.2337/db12-0237

    Article  CAS  PubMed  Google Scholar 

  63. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991. https://doi.org/10.1074/jbc.275.21.15985

    Article  CAS  PubMed  Google Scholar 

  64. Fan H-Q, Gu N, Liu F et al (2007) Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles. Acta Pharmacol Sin 28:410–416. https://doi.org/10.1111/j.1745-7254.2007.00523.x

    Article  CAS  PubMed  Google Scholar 

  65. Moon B, Kwan JJ-M, Duddy N, Sweeney G, Begum N (2003) Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 285:E106–E115. https://doi.org/10.1152/ajpendo.00457.2002

    Article  CAS  PubMed  Google Scholar 

  66. Bednarska-Makaruk M, Graban A, Wiśniewska A, Łojkowska W, Bochyńska A, Gugała-Iwaniuk M, Sławińska K, Ługowska A et al (2017) Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology 18:561–580. https://doi.org/10.1007/s10522-017-9701-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeisel A, Muñoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. https://doi.org/10.1126/science.aaa1934

    Article  CAS  PubMed  Google Scholar 

  68. Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM et al (2016) Glial cells and energy balance. J Mol Endocrinol. https://doi.org/10.1530/JME-16-0182

  69. Liu B, Teschemacher AG, Kasparov S (2017) Neuroprotective potential of astroglia. J Neurosci Res 95:2126–2139

    Article  CAS  PubMed  Google Scholar 

  70. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Magistretti PJ, Sorg O, Naichen Y, Pellerin L, de Rham S, Martin JL (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17:168–171

    CAS  PubMed  Google Scholar 

  72. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30:1982–1986. https://doi.org/10.1038/jcbfm.2010.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martin-Jiménez CA, Gaitán-Vaca DM, Echeverria V et al (2016) Relationship between obesity, Alzheimer’s disease, and Parkinson’s disease: an astrocentric view. Mol Neurobiol:1–20. https://doi.org/10.1007/s12035-016-0193-8

    Article  PubMed  Google Scholar 

  74. Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448. https://doi.org/10.1212/01.WNL.0000265401.62434.36

    Article  CAS  PubMed  Google Scholar 

  75. Chapman CD, Frey WH, Craft S, Danielyan L, Hallschmid M, Schiöth HB, Benedict C (2013) Intranasal treatment of central nervous system dysfunction in humans. Pharm Res 30:2475–2484. https://doi.org/10.1007/s11095-012-0915-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-AFB 170005) to N.C.I., FONDECYT (no. 1160724) to N.C.I., FONDECYT (no. 11160651) to P.C, and the National Institute of Health (DK084171) to G.W.W. We also thank the Sociedad Química y Minera de Chile (SQM) for the special grants “The role of K+ on Hypertension and Cognition” and “The role of Lithium in Human Health and Disease”.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: P.C. and N.C.I. Performed the experiments: P.C. and M.M. Analyzed the data: P.C., R.S.A., G.W.W., and N.C.I. Contributed reagents/materials/analysis tools: N.C.I. Wrote the manuscript: P.C., G.W.W., and N.C.I.

Corresponding authors

Correspondence to Pedro Cisternas or Nibaldo C. Inestrosa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisternas, P., Martinez, M., Ahima, R.S. et al. Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Mol Neurobiol 56, 3024–3037 (2019). https://doi.org/10.1007/s12035-018-1271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1271-x

Keywords

Navigation