Skip to main content

Advertisement

Log in

Peripheral Biomarkers for Early Detection of Alzheimer’s and Parkinson’s Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurological disorders are found to be influencing the peripheral tissues outside CNS. Recent developments in biomarkers for CNS have emerged with various diagnostic and therapeutic shortcomings. The role of central biomarkers including CSF-based and molecular imaging-based probes are still unclear for early diagnosis of major neurological diseases. Current trends show that early detection of neurodegenerative diseases with non-invasive methods is a major focus of researchers, and the development of biomarkers aiming peripheral tissues is in demand. Alzheimer’s and Parkinson’s diseases are known for the progressive loss in neural structures or functions, including the neural death. Various dysfunctions of metabolic and biochemical pathways are associated with early occurrence of neuro-disorders in peripheral tissues including skin, blood cells, and eyes. This article reviews the peripheral biomarkers explored for early detection of Alzheimer’s and Parkinson’s diseases including blood cells, skin fibroblast, proteomics, saliva, olfactory, stomach and colon, heart and peripheral nervous system, and others.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. https://doi.org/10.1016/j.bcp.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191. https://doi.org/10.1016/j.jalz.2007.04.381

    Article  PubMed  Google Scholar 

  3. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174. https://doi.org/10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  4. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Arch Neurology 56(9):1133–1142

    Article  CAS  Google Scholar 

  5. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62(11):1984–1989

    Article  CAS  PubMed  Google Scholar 

  6. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pascale A, Amadio M, Govoni S, Battaini F (2007) The aging brain, a key target for the future: the protein kinase C involvement. Pharmacol Res 55(6):560–569. https://doi.org/10.1016/j.phrs.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Alkon DL, Sun MK, Nelson TJ (2007) PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer’s disease. Trends Pharmacol Sci 28(2):51–60. https://doi.org/10.1016/j.tips.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Janoshazi A, Sellal F, Marescaux C, Danion JM, Warter JM, de Barry J (2006) Alteration of protein kinase C conformation in red blood cells: a potential marker for Alzheimer’s disease but not for Parkinson’s disease. Neurobiol Aging 27(2):245–251. https://doi.org/10.1016/j.neurobiolaging.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  10. Hye A, Kerr F, Archer N, Foy C, Poppe M, Brown R, Hamilton G, Powell J et al (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci Lett 373(1):1–4. https://doi.org/10.1016/j.neulet.2004.10.031

    Article  CAS  PubMed  Google Scholar 

  11. Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH et al (2015) Tau reduction prevents Abeta-induced axonal transport deficits by blocking activation of GSK3beta. J Cell Biol 209(3):419–433. https://doi.org/10.1083/jcb.201407065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D et al (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J Neurochem 135(3):630–637. https://doi.org/10.1111/jnc.13351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Catricala S, Torti M, Ricevuti G (2012) Alzheimer disease and platelets: how’s that relevant. Immunity & Ageing 9(1):20. https://doi.org/10.1186/1742-4933-9-20

    Article  CAS  Google Scholar 

  14. Tang K, Hynan LS, Baskin F, Rosenberg RN (2006) Platelet amyloid precursor protein processing: a bio-marker for Alzheimer’s disease. J Neurol Sci 240(1-2):53–58. https://doi.org/10.1016/j.jns.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Baskin F, Rosenberg RN, Iyer L, Hynan L, Cullum CM (2000) Platelet APP isoform ratios correlate with declining cognition in AD. Neurology 54(10):1907–1909

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee P, Gupta VB, Fagan AM, Jasielec MS, Xiong C, Sohrabi HR, Dhaliwal S, Taddei K et al (2015) Decreased platelet APP isoform ratios in autosomal dominant Alzheimer’s disease: baseline data from a DIAN cohort subset. Curr Alzheimer Res 12(2):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC (2018) The serum exosome derived microRNA-135a, −193b, and −384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31(2):87–96. https://doi.org/10.3967/bes2018.011

    Article  PubMed  Google Scholar 

  21. Kumar S, Vijayan M, Reddy PH (2017) MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet 26(19):3808–3822. https://doi.org/10.1093/hmg/ddx267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K, Murayama S, Ikeuchi T et al (2017) Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol Commun 5(1):10. https://doi.org/10.1186/s40478-017-0414-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L et al (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336(1-2):52–56. https://doi.org/10.1016/j.jns.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SM, Arighi A, Fumagalli G et al (2014) Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimer’s Dis 42(4):1261–1267. https://doi.org/10.3233/jad-140756

    Article  CAS  Google Scholar 

  25. Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimer’s Dis 39(2):253–259. https://doi.org/10.3233/jad-130932

    Article  CAS  Google Scholar 

  26. Oh ES, Troncoso JC, Fangmark Tucker SM (2008) Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer’s disease. Neuromol Med 10(3):195–207. https://doi.org/10.1007/s12017-008-8035-0

    Article  CAS  Google Scholar 

  27. Mayeux R, Honig LS, Tang MX, Manly J, Stern Y, Schupf N, Mehta PD (2003) Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61(9):1185–1190

    Article  CAS  PubMed  Google Scholar 

  28. Sundelof J, Giedraitis V, Irizarry MC, Sundstrom J, Ingelsson E, Ronnemaa E, Arnlov J, Gunnarsson MD et al (2008) Plasma beta amyloid and the risk of Alzheimer disease and dementia in elderly men: a prospective, population-based cohort study. Arch Neurol 65(2):256–263. https://doi.org/10.1001/archneurol.2007.57

    Article  PubMed  Google Scholar 

  29. van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM (2006) Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5(8):655–660. https://doi.org/10.1016/s1474-4422(06)70501-4

    Article  PubMed  Google Scholar 

  30. Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC (2003) Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch Neurol 60(7):958–964. https://doi.org/10.1001/archneur.60.7.958

    Article  PubMed  Google Scholar 

  31. Tamaoka A, Fukushima T, Sawamura N, Ishikawa K, Oguni E, Komatsuzaki Y, Shoji S (1996) Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. J Neurol Sci 141(1-2):65–68

    Article  CAS  PubMed  Google Scholar 

  32. Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1(2):226–234. https://doi.org/10.1602/neurorx.1.2.226

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11):1359–1362. https://doi.org/10.1038/nm1653

    Article  CAS  PubMed  Google Scholar 

  34. Marksteiner J, Kemmler G, Weiss EM, Knaus G, Ullrich C, Mechtcheriakov S, Oberbauer H, Auffinger S et al (2011) Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32(3):539–540. https://doi.org/10.1016/j.neurobiolaging.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  35. Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M (2009) Identifying early markers of Alzheimer’s disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci 1180:56–67. https://doi.org/10.1111/j.1749-6632.2009.05066.x

    Article  CAS  PubMed  Google Scholar 

  36. Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129(Pt 11):3042–3050. https://doi.org/10.1093/brain/awl279

    Article  CAS  PubMed  Google Scholar 

  37. Liao PC, Yu L, Kuo CC, Lin C, Kuo YM (2007) Proteomics analysis of plasma for potential biomarkers in the diagnosis of Alzheimer’s disease. Proteomics Clin Appl 1(5):506–512. https://doi.org/10.1002/prca.200600684

    Article  CAS  PubMed  Google Scholar 

  38. Yu HL, Chertkow HM, Bergman H, Schipper HM (2003) Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics 3(11):2240–2248. https://doi.org/10.1002/pmic.200300475

    Article  CAS  PubMed  Google Scholar 

  39. Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW (2002) Identification of oxidized plasma proteins in Alzheimer’s disease. Biochem Biophys Res Commun 293(5):1566–1570. https://doi.org/10.1016/s0006-291x(02)00420-5

    Article  CAS  PubMed  Google Scholar 

  40. Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ, Cheng IH (2015) Alterations of the neuroinflammatory markers IL-6 and TRAIL in Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 5(3):424–434. https://doi.org/10.1159/000439214

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frederikse PH, Garland D, Zigler JS Jr, Piatigorsky J (1996) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem 271(17):10169–10174

    Article  CAS  PubMed  Google Scholar 

  42. Frederikse PH, Ren XO (2002) Lens defects and age-related fiber cell degeneration in a mouse model of increased AbetaPP gene dosage in Down syndrome. Am J Pathol 161(6):1985–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melov S, Wolf N, Strozyk D, Doctrow SR, Bush AI (2005) Mice transgenic for Alzheimer disease beta-amyloid develop lens cataracts that are rescued by antioxidant treatment. Free Radic Biol Med 38(2):258–261. https://doi.org/10.1016/j.freeradbiomed.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein LE, Muffat JA, Cherny RA, Moir RD, Ericsson MH, Huang X, Mavros C, Coccia JA et al (2003) Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361(9365):1258–1265. https://doi.org/10.1016/s0140-6736(03)12981-9

    Article  CAS  PubMed  Google Scholar 

  45. Moncaster JA, Pineda R, Moir RD, Lu S, Burton MA, Ghosh JG, Ericsson M, Soscia SJ et al (2010) Alzheimer’s disease amyloid-beta links lens and brain pathology in Down syndrome. PLoS One 5(5):e10659. https://doi.org/10.1371/journal.pone.0010659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kerbage C, Sadowsky CH, Jennings D, Cagle GD, Hartung PD (2013) Alzheimer’s disease diagnosis by detecting exogenous fluorescent signal of ligand bound to Beta amyloid in the lens of human eye: an exploratory study. Front Neurol 4:62. https://doi.org/10.3389/fneur.2013.00062

    Article  PubMed  PubMed Central  Google Scholar 

  47. Michael R, Rosandic J, Montenegro GA, Lobato E, Tresserra F, Barraquer RI, Vrensen GF (2013) Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer’s disease. Exp Eye Res 106:5–13. https://doi.org/10.1016/j.exer.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  48. Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG (2014) Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol 24(1):25–32. https://doi.org/10.1111/bpa.12070

    Article  CAS  PubMed  Google Scholar 

  49. Bei L, Shui YB, Bai F, Nelson SK, Van Stavern GP, Beebe DC (2015) A test of lens opacity as an indicator of preclinical Alzheimer disease. Exp Eye Res 140:117–123. https://doi.org/10.1016/j.exer.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48(5):2285–2289. https://doi.org/10.1167/iovs.06-1029

    Article  PubMed  Google Scholar 

  51. Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 33(1):58–61. https://doi.org/10.1097/WNO.0b013e318267fd5f

    Article  PubMed  Google Scholar 

  52. Lu Y, Li Z, Zhang X, Ming B, Jia J, Wang R, Ma D (2010) Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett 480(1):69–72. https://doi.org/10.1016/j.neulet.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  53. Chi Y, Wang YH, Yang L (2010) The investigation of retinal nerve fiber loss in Alzheimer’s disease. Zhonghua Yan Ke Za Zhi 46(2):134–139

    PubMed  Google Scholar 

  54. Gao L, Liu Y, Li X, Bai Q, Liu P (2015) Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch Gerontol Geriatr 60(1):162–167. https://doi.org/10.1016/j.archger.2014.10.011

    Article  PubMed  Google Scholar 

  55. Gunes A, Demirci S, Tok L, Tok O, Demirci S (2015) Evaluation of retinal nerve fiber layer thickness in Alzheimer disease using spectral-domain optical coherence tomography. Turk J Med Sci 45(5):1094–1097

    Article  CAS  PubMed  Google Scholar 

  56. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50(2):793–800. https://doi.org/10.1167/iovs.08-2384

    Article  PubMed  Google Scholar 

  57. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175(5):2099–2110. https://doi.org/10.2353/ajpath.2009.090159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, Salvado O, Villemagne V, Rowe CC et al (2013) Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 3:e233. https://doi.org/10.1038/tp.2012.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blanks JC, Hinton DR, Sadun AA, Miller CA (1989) Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 501(2):364–372

    Article  CAS  PubMed  Google Scholar 

  60. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17(3):385–395

    Article  CAS  PubMed  Google Scholar 

  61. Sadun AA, Bassi CJ (1990) Optic nerve damage in Alzheimer’s disease. Ophthalmology 97(1):9–17

    Article  CAS  PubMed  Google Scholar 

  62. Williams PA, Thirgood RA, Oliphant H, Frizzati A, Littlewood E, Votruba M, Good MA, Williams J et al (2013) Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(7):1799–1806. https://doi.org/10.1016/j.neurobiolaging.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  63. Lu Y, Tang N, Wang R (2012) Retinal ganglion cell loss on APP/PS1 transgenic mice with Alzheimer’s disease. Zhonghua Yan Ke Za Zhi 48(9):836–841

    PubMed  Google Scholar 

  64. Zhao WQ, Ravindranath L, Mohamed AS, Zohar O, Chen GH, Lyketsos CG, Etcheberrigaray R, Alkon DL (2002) MAP kinase signaling cascade dysfunction specific to Alzheimer’s disease in fibroblasts. Neurobiol Dis 11(1):166–183

    Article  CAS  PubMed  Google Scholar 

  65. Veeranna, Kaji T, Boland B, Odrljin T, Mohan P, Basavarajappa BS, Peterhoff C, Cataldo A et al (2004) Calpain mediates calcium-induced activation of the Erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am J Pathol 165(3):795–805. https://doi.org/10.1016/s0002-9440(10)63342-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khan TK, Alkon DL (2006) An internally controlled peripheral biomarker for Alzheimer’s disease: Erk1 and Erk2 responses to the inflammatory signal bradykinin. Proc Natl Acad Sci U S A 103(35):13203–13207. https://doi.org/10.1073/pnas.0605411103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan TK, Alkon DL (2010) Early diagnostic accuracy and pathophysiologic relevance of an autopsy-confirmed Alzheimer’s disease peripheral biomarker. Neurobiol Aging 31(6):889–900. https://doi.org/10.1016/j.neurobiolaging.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  68. Peterson C, Gibson GE, Blass JP (1985) Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. N Engl J Med 312(16):1063–1065. https://doi.org/10.1056/nejm198504183121618

    Article  CAS  PubMed  Google Scholar 

  69. Peterson C, Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci U S A 83(20):7999–8001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peterson C, Ratan RR, Shelanski ML, Goldman JE (1988) Altered response of fibroblasts from aged and Alzheimer donors to drugs that elevate cytosolic free calcium. Neurobiol Aging 9(3):261–266

    Article  CAS  PubMed  Google Scholar 

  71. Peterson C, Goldman JE (1986) Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci U S A 83(8):2758–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumar U, Dunlop DM, Richardson JS (1994) Mitochondria from Alzheimer’s fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals. Life Sci 54(24):1855–1860

    Article  CAS  PubMed  Google Scholar 

  73. Borden LA, Maxfield FR, Goldman JE, Shelanski ML (1992) Resting [Ca2+]i and [Ca2+]i transients are similar in fibroblasts from normal and Alzheimer’s donors. Neurobiol Aging 13(1):33–38

    Article  CAS  PubMed  Google Scholar 

  74. Etcheberrigaray R, Ito E, Kim CS, Alkon DL (1994) Soluble beta-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels. Science 264(5156):276–279

    Article  CAS  PubMed  Google Scholar 

  75. Hirashima N, Etcheberrigaray R, Bergamaschi S, Racchi M, Battaini F, Binetti G, Govoni S, Alkon DL (1996) Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease. Neurobiol Aging 17(4):549–555

    Article  CAS  PubMed  Google Scholar 

  76. Ito E, Oka K, Etcheberrigaray R, Nelson TJ, McPhie DL, Tofel-Grehl B, Gibson GE, Alkon DL (1994) Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease. Proc Natl Acad Sci U S A 91(2):534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Etcheberrigaray R, Hirashima N, Nee L, Prince J, Govoni S, Racchi M, Tanzi RE, Alkon DL (1998) Calcium responses in fibroblasts from asymptomatic members of Alzheimer’s disease families. Neurobiol Dis 5(1):37–45. https://doi.org/10.1006/nbdi.1998.0176

    Article  CAS  PubMed  Google Scholar 

  78. Sharma S, Moon CS, Khogali A, Haidous A, Chabenne A, Ojo C, Jelebinkov M, Kurdi Y et al (2013) Biomarkers in Parkinson’s disease (recent update). Neurochem Int 63(3):201–229. https://doi.org/10.1016/j.neuint.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  79. Louis ED, Bennett DA (2007) Mild Parkinsonian signs: an overview of an emerging concept. Mov Disord 22(12):1681–1688. https://doi.org/10.1002/mds.21433

    Article  PubMed  Google Scholar 

  80. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, Sasse J, Boyer S et al (2009) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117(6):613–634. https://doi.org/10.1007/s00401-009-0538-8

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grundemann J, Schlaudraff F, Haeckel O, Liss B (2008) Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res 36(7):e38. https://doi.org/10.1093/nar/gkn084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378(5):1104–1115. https://doi.org/10.1016/j.jmb.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonini NM, Giasson BI (2005) Snaring the function of alpha-synuclein. Cell 123(3):359–361. https://doi.org/10.1016/j.cell.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  84. Maiti NC, Apetri MM, Zagorski MG, Carey PR, Anderson VE (2004) Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J Am Chem Soc 126(8):2399–2408. https://doi.org/10.1021/ja0356176

    Article  CAS  PubMed  Google Scholar 

  85. Mollenhauer B, Trautmann E, Taylor P, Manninger P, Sixel-Doring F, Ebentheuer J, Trenkwalder C, Schlossmacher MG (2013) Total CSF alpha-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci Lett 532:44–48. https://doi.org/10.1016/j.neulet.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  86. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, Waligorska T, Taylor P et al (2013) Association of cerebrospinal fluid beta-amyloid 1-42, T-tau, P-tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol 70(10):1277–1287. https://doi.org/10.1001/jamaneurol.2013.3861

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ono K, Yamada M (2014) Alpha-Synuclein in blood and cerebrospinal fluid of patients with alpha-synucleinopathy. Rinsho Byori 62(3):241–245

    CAS  PubMed  Google Scholar 

  88. Tinsley RB, Kotschet K, Modesto D, Ng H, Wang Y, Nagley P, Shaw G, Horne MK (2010) Sensitive and specific detection of alpha-synuclein in human plasma. J Neurosci Res 88(12):2693–2700. https://doi.org/10.1002/jnr.22417

    Article  CAS  PubMed  Google Scholar 

  89. Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M et al (2011) Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. Faseb J 25(12):4127–4137. https://doi.org/10.1096/fj.10-179192

    Article  CAS  PubMed  Google Scholar 

  90. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. Faseb J 20(3):419–425. https://doi.org/10.1096/fj.03-1449com

    Article  CAS  PubMed  Google Scholar 

  91. Chau KY, Ching HL, Schapira AH, Cooper JM (2009) Relationship between alpha synuclein phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson’s disease pathogenesis. J Neurochem 110(3):1005–1013

    Article  CAS  PubMed  Google Scholar 

  92. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K et al (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160

    Article  CAS  PubMed  Google Scholar 

  93. Muntane G, Ferrer I, Martinez-Vicente M (2012) α-Synuclein phosphorylation and truncation are normal events in the adult human brain. Neuroscience 200:106–119

    Article  CAS  PubMed  Google Scholar 

  94. Michell AW, Luheshi LM, Barker RA (2005) Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci Lett 381(3):294–298. https://doi.org/10.1016/j.neulet.2005.02.030

    Article  CAS  PubMed  Google Scholar 

  95. Donadio V, Incensi A, Leta V, Giannoccaro MP, Scaglione C, Martinelli P, Capellari S, Avoni P et al (2014) Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82(15):1362–1369. https://doi.org/10.1212/wnl.0000000000000316

    Article  CAS  PubMed  Google Scholar 

  96. Al-Nimer MS, Mshatat SF, Abdulla HI (2014) Saliva alpha-synuclein and a high extinction coefficient protein: a novel approach in assessment biomarkers of Parkinson’s disease. N Am J Med Sci 6(12):633–637. https://doi.org/10.4103/1947-2714.147980

    Article  PubMed  PubMed Central  Google Scholar 

  97. Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H (2010) Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol 119(6):703–713. https://doi.org/10.1007/s00401-010-0665-2

    Article  PubMed  Google Scholar 

  98. Adler CH, Dugger BN, Hinni ML, Lott DG, Driver-Dunckley E, Hidalgo J, Henry-Watson J, Serrano G et al (2014) Submandibular gland needle biopsy for the diagnosis of Parkinson disease. Neurology 82(10):858–864. https://doi.org/10.1212/WNL.0000000000000204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cersosimo MG, Perandones C, Micheli FE, Raina GB, Beron AM, Nasswetter G, Radrizzani M, Benarroch EE (2011) Alpha-synuclein immunoreactivity in minor salivary gland biopsies of Parkinson’s disease patients. Mov Disord 26(1):188–190. https://doi.org/10.1002/mds.23344

    Article  PubMed  Google Scholar 

  100. Duda JE, Shah U, Arnold SE, Lee VM, Trojanowski JQ (1999) The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 160(2):515–522. https://doi.org/10.1006/exnr.1999.7228

    Article  CAS  PubMed  Google Scholar 

  101. Beach TG, White CL III, Hladik CL, Sabbagh MN, Connor DJ, Shill HA, Sue LI, Sasse J et al (2009) Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol 117(2):169–174. https://doi.org/10.1007/s00401-008-0450-7

    Article  CAS  PubMed  Google Scholar 

  102. Witt M, Bormann K, Gudziol V, Pehlke K, Barth K, Minovi A, Hahner A, Reichmann H et al (2009) Biopsies of olfactory epithelium in patients with Parkinson’s disease. Mov Disord 24(6):906–914. https://doi.org/10.1002/mds.22464

    Article  PubMed  Google Scholar 

  103. Lebouvier T, Chaumette T, Damier P, Coron E, Touchefeu Y, Vrignaud S, Naveilhan P, Galmiche JP et al (2008) Pathological lesions in colonic biopsies during Parkinson’s disease. Gut 57(12):1741–1743. https://doi.org/10.1136/gut.2008.162503

    Article  CAS  PubMed  Google Scholar 

  104. Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, Drouard A, N’Guyen JM, Chaumette T, Tasselli M et al (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5(9):e12728. https://doi.org/10.1371/journal.pone.0012728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pouclet H, Lebouvier T, Coron E, Bruley des Varannes S, Neunlist M, Derkinderen P (2012) A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson’s disease. Neurogastroenterol Motil 24(4):e202–e205. https://doi.org/10.1111/j.1365-2982.2012.01887.x

    Article  CAS  PubMed  Google Scholar 

  106. Pouclet H, Lebouvier T, Coron E, Bruley des Varannes S, Rouaud T, Roy M, Neunlist M, Derkinderen P (2012) A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson’s disease. Neurobiol Dis 45(1):305–309. https://doi.org/10.1016/j.nbd.2011.08.014

    Article  PubMed  Google Scholar 

  107. Shannon KM, Keshavarzian A, Mutlu E, Dodiya HB, Daian D, Jaglin JA, Kordower JH (2012) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 27(6):709–715. https://doi.org/10.1002/mds.23838

    Article  PubMed  Google Scholar 

  108. Sanchez-Ferro A, Rabano A, Catalan MJ, Rodriguez-Valcarcel FC, Diez SF, Herreros-Rodriguez J, Garcia-Cobos E, Alvarez-Santullano MM et al (2014) In vivo gastric detection of alpha-synuclein inclusions in Parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.25988

  109. Iwanaga K, Wakabayashi K, Yoshimoto M, Tomita I, Satoh H, Takashima H, Satoh A, Seto M et al (1999) Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 52(6):1269–1271

    Article  CAS  PubMed  Google Scholar 

  110. Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takahashi H (2008) Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 131(Pt 3):642–650. https://doi.org/10.1093/brain/awm302

    Article  PubMed  Google Scholar 

  111. Fujishiro H, Frigerio R, Burnett M, Klos KJ, Josephs KA, Delledonne A, Parisi JE, Ahlskog JE et al (2008) Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson’s disease. Mov Disord 23(8):1085–1092. https://doi.org/10.1002/mds.21989

    Article  PubMed  Google Scholar 

  112. Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72. https://doi.org/10.1016/j.neulet.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  113. Mu L, Sobotka S, Chen J, Su H, Sanders I, Nyirenda T, Adler CH, Shill HA et al (2013) Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol 72(7):614–623. https://doi.org/10.1097/NEN.0b013e3182965886

    Article  PubMed  Google Scholar 

  114. Maita C, Tsuji S, Yabe I, Hamada S, Ogata A, Maita H, Iguchi-Ariga SM, Sasaki H et al (2008) Secretion of DJ-1 into the serum of patients with Parkinson’s disease. Neurosci Lett 431(1):86–89. https://doi.org/10.1016/j.neulet.2007.11.027

    Article  CAS  PubMed  Google Scholar 

  115. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. https://doi.org/10.1126/science.1077209

    Article  CAS  PubMed  Google Scholar 

  116. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(Pt 3):713–726. https://doi.org/10.1093/brain/awq008

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, Chung KA, Quinn JF et al (2010) Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett 480(1):78–82. https://doi.org/10.1016/j.neulet.2010.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, Hu SC, Cain KC, Pan C et al (2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2:954. https://doi.org/10.1038/srep00954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Church WH, Ward VL (1994) Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect on dopamine oxidation. Brain Res Bull 33(4):419–425

    Article  CAS  PubMed  Google Scholar 

  120. Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM (1996) Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol 144(5):480–484

    Article  CAS  PubMed  Google Scholar 

  121. Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166(5):561–567. https://doi.org/10.1093/aje/kwm127

    Article  CAS  PubMed  Google Scholar 

  122. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5):797–800. https://doi.org/10.1002/ana.20663

    Article  CAS  PubMed  Google Scholar 

  123. De Vera M, Rahman MM, Rankin J, Kopec J, Gao X, Choi H (2008) Gout and the risk of Parkinson’s disease: a cohort study. Arthritis Rheum 59(11):1549–1554. https://doi.org/10.1002/art.24193

    Article  PubMed  Google Scholar 

  124. Gao X, Chen H, Choi HK, Curhan G, Schwarzschild MA, Ascherio A (2008) Diet, urate, and Parkinson’s disease risk in men. Am J Epidemiol 167(7):831–838. https://doi.org/10.1093/aje/kwm385

    Article  PubMed  Google Scholar 

  125. O’Reilly EJ, Gao X, Weisskopf MG, Chen H, Schwarzschild MA, Spiegelman D, Ascherio A (2010) Plasma urate and Parkinson’s disease in women. Am J Epidemiol 172(6):666–670. https://doi.org/10.1093/aje/kwq195

    Article  PubMed  PubMed Central  Google Scholar 

  126. Constantinescu R, Zetterberg H (2011) Urate as a marker of development and progression in Parkinson’s disease. Drugs Today (Barc) 47(5):369–380. https://doi.org/10.1358/dot.2011.47.5.1591834

    Article  CAS  Google Scholar 

  127. Cipriani S, Chen X, Schwarzschild MA (2010) Urate: a novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomark Med 4(5):701–712. https://doi.org/10.2217/bmm.10.94

    Article  CAS  PubMed  Google Scholar 

  128. Chen-Plotkin AS, Hu WT, Siderowf A, Weintraub D, Goldmann Gross R, Hurtig HI, Xie SX, Arnold SE et al (2011) Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann Neurol 69(4):655–663. https://doi.org/10.1002/ana.22271

    Article  CAS  PubMed  Google Scholar 

  129. Pellecchia MT, Santangelo G, Picillo M, Pivonello R, Longo K, Pivonello C, Vitale C, Amboni M et al (2013) Serum epidermal growth factor predicts cognitive functions in early, drug-naive Parkinson’s disease patients. J Neurol 260(2):438–444. https://doi.org/10.1007/s00415-012-6648-6

    Article  CAS  PubMed  Google Scholar 

  130. Qiang JK, Wong YC, Siderowf A, Hurtig HI, Xie SX, Lee VM, Trojanowski JQ, Yearout D et al (2013) Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 74(1):119–127. https://doi.org/10.1002/ana.23872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang X, Yin X, Yu H, Liu X, Yang F, Yao J, Jin H, Yang P (2012) Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 137(2):490–495. https://doi.org/10.1039/c1an15551b

    Article  CAS  PubMed  Google Scholar 

  132. Wang ES, Sun Y, Guo JG, Gao X, Hu JW, Zhou L, Hu J, Jiang CC (2010) Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol Scand 122(5):350–359. https://doi.org/10.1111/j.1600-0404.2009.01318.x

    Article  CAS  PubMed  Google Scholar 

  133. Yin GN, Lee HW, Cho JY, Suk K (2009) Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res 1265:158–170. https://doi.org/10.1016/j.brainres.2009.01.058

    Article  CAS  PubMed  Google Scholar 

  134. Gao X, Simon KC, Schwarzschild MA, Ascherio A (2012) Prospective study of statin use and risk of Parkinson disease. Arch Neurol 69(3):380–384. https://doi.org/10.1001/archneurol.2011.1060

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lee YC, Lin CH, Wu RM, Lin MS, Lin JW, Chang CH, Lai MS (2013) Discontinuation of statin therapy associates with Parkinson disease: a population-based study. Neurology 81(5):410–416. https://doi.org/10.1212/WNL.0b013e31829d873c

    Article  CAS  PubMed  Google Scholar 

  136. Cao XY, Lu JM, Zhao ZQ, Li MC, Lu T, An XS, Xue LJ (2017) MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett 644:94–99. https://doi.org/10.1016/j.neulet.2017.02.045

    Article  CAS  PubMed  Google Scholar 

  137. Ma W, Li Y, Wang C, Xu F, Wang M, Liu Y (2016) Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 34(7):511–515. https://doi.org/10.1002/cbf.3224

    Article  CAS  PubMed  Google Scholar 

  138. Dong H, Wang C, Lu S, Yu C, Huang L, Feng W, Xu H, Chen X et al (2016) A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 21(2):129–137. https://doi.org/10.3109/1354750x.2015.1118544

    Article  CAS  PubMed  Google Scholar 

  139. Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152(3):96–101. https://doi.org/10.1016/j.jbiotec.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  140. Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menendez M, Alvarez V (2013) Profile of microRNAs in the plasma of Parkinson’s disease patients and healthy controls. J Neurol 260(5):1420–1422. https://doi.org/10.1007/s00415-013-6900-8

    Article  PubMed  Google Scholar 

  141. Greenberg BM, Frohman E (2010) Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 3(3):153–160. https://doi.org/10.1177/1756285610368890

    Article  PubMed  PubMed Central  Google Scholar 

  142. Satue M, Rodrigo MJ, Obis J, Vilades E, Gracia H, Otin S, Fuertes MI, Alarcia R, Crespo JA, Polo V, Larrosa JM, Pablo LE, Garcia-Martin E (2017) Evaluation of progressive visual dysfunction and retinal degeneration in patients with parkinson's disease. Invest Ophthalmol Vis Sci 58(2):1151–1157. https://doi.org/10.1167/iovs.16-20460. http://iovs.arvojournals.org/article.aspx?articleid=2604719

  143. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44(24):2793–2797. https://doi.org/10.1016/j.visres.2004.06.009

    Article  PubMed  Google Scholar 

  144. Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127(6):737–741. https://doi.org/10.1001/archophthalmol.2009.106

    Article  PubMed  Google Scholar 

  145. Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116(2):137–146. https://doi.org/10.1007/s10633-007-9091-8

    Article  PubMed  Google Scholar 

  146. Yavas GF, Yilmaz O, Kusbeci T, Ozturk F (2007) The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 17(5):812–816

    Article  CAS  PubMed  Google Scholar 

  147. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10):1734–1746. https://doi.org/10.1016/j.ophtha.2005.05.023

    Article  PubMed  Google Scholar 

  148. Tian T, Zhu XH, Liu YH (2011) Potential role of retina as a biomarker for progression of Parkinson’s disease. Int J Ophthalmol 4(4):433–438. https://doi.org/10.3980/j.issn.2222-3959.2011.04.21

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jimenez B, Ascaso FJ, Cristobal JA, Lopez del Val J (2014) Development of a prediction formula of Parkinson disease severity by optical coherence tomography. Mov Disord 29(1):68–74. https://doi.org/10.1002/mds.25747

    Article  PubMed  Google Scholar 

  150. Lee JY, Ahn J, Kim TW, Jeon BS (2014) Optical coherence tomography in Parkinson’s disease: is the retina a biomarker? J Parkinsons Dis 4(2):197–204. https://doi.org/10.3233/jpd-130306

    Article  PubMed  Google Scholar 

  151. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17(6):431–436. https://doi.org/10.1016/j.parkreldis.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  152. Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A et al (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10(6):799–807.e792. https://doi.org/10.1016/j.jalz.2014.05.1749

    Article  PubMed  PubMed Central  Google Scholar 

  153. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17(3):377–384

    Article  CAS  PubMed  Google Scholar 

  154. Menéndez-González M (2014) The many questions on the use of biomarkers for neurodegenerative diseases in clinical practice. Front Aging Neurosci 6:45

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors (BG and PP) acknowledges The Lee Kong Chian School of Medicine, Nanyang Technological University MOE Start-Up Grant and MOE Tier-1 grants (2014-T1-001-229-1T1-04/14 and L0421160-1T1-06/15), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parasuraman Padmanabhan or Balázs Gulyás.

Ethics declarations

Research Involving Human Participants and/or Animals

Not applicable

Informed Consent

Not applicable

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htike, T.T., Mishra, S., Kumar, S. et al. Peripheral Biomarkers for Early Detection of Alzheimer’s and Parkinson’s Diseases. Mol Neurobiol 56, 2256–2277 (2019). https://doi.org/10.1007/s12035-018-1151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1151-4

Keywords

Navigation