Skip to main content

Advertisement

Log in

Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In Alzheimer’s disease (AD), the impaired clearance of β-amyloid peptide (Aβ) due to disrupted tight junction and transporter proteins is the prominent cause of disease progression. Somatostatin (SST) blocks the aggregation of Aβ and inflammation whereas reduction of SST levels in the CSF and brain tissue is associated with impaired cognitive function and memory loss. However, the role of SST in preservation of blood-brain barrier (BBB) integrity and functionality in Aβ-induced toxicity is not known. In the present study using human CMEC/D3 cells, we demonstrate that SST prevents Aβ-induced BBB permeability by regulating LRP1 and RAGE expression and improving the disrupted tight junction proteins. Furthermore, SST abrogates Aβ-induced JNK phosphorylation and expression of MMP2. Taken together, results presented here suggest that SST might serve as a therapeutic intervention in AD via targeting multiple pathways responsible for neurotoxicity, impaired BBB function, and disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-amyloid peptide

BBB:

Blood-brain barrier

hCMEC/D3:

Human cerebral microvascular endothelial cell line

CNS:

Central nervous system

ECM:

Extracellular matrix

FAM:

Fluorescein amidite

IFN-γ:

Interferon-γ

IL-1β:

Interleukin 1β

JNK:

c-Jun N-terminal kinases

ko :

Knock out

LPS:

Lipopolysaccharide

LRP:

Lipoprotein receptor-related protein

MMP:

Matrix metallopeptides

RAGE:

Receptor for advanced glycation end products

SST:

Somatostatin

SSTR:

Somatostatin receptor

tg :

Transgenic

TJP:

Tight junction protein

TNF-α:

Tumor necrosis factor-α

ZO:

Zonula occluden

References

  1. Selkoe DJ (2001) Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev 81(2):741–766

    Article  CAS  PubMed  Google Scholar 

  2. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16(5):921–932

    Article  CAS  PubMed  Google Scholar 

  3. Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation 8:26. https://doi.org/10.1186/1742-2094-8-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mhatre M, Nguyen A, Kashani S, Pham T, Adesina A, Grammas P (2004) Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 25(6):783–793. https://doi.org/10.1016/j.neurobiolaging.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  5. Yin X, Wright J, Wall T, Grammas P (2010) Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer's disease. Am J Pathol 176(4):1600–1606. https://doi.org/10.2353/ajpath.2010.090406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar U (2005) Expression of somatostatin receptor subtypes (SSTR1-5) in Alzheimer's disease brain: An immunohistochemical analysis. Neuroscience 134(2):525–538. https://doi.org/10.1016/j.neuroscience.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  8. Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res Fortschr Arzneim Forsch Prog Rech Pharm 61:39–78

    CAS  Google Scholar 

  9. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  10. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335(1):75–96. https://doi.org/10.1007/s00441-008-0658-9

    Article  PubMed  Google Scholar 

  11. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788

    Article  CAS  PubMed  Google Scholar 

  13. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147(6):1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11(5):628–633

    Article  CAS  PubMed  Google Scholar 

  15. Eisenhauer PB, Johnson RJ, Wells JM, Davies TA, Fine RE (2000) Toxicity of various amyloid beta peptide species in cultured human blood-brain barrier endothelial cells: Increased toxicity of dutch-type mutant. J Neurosci Res 60(6):804–810. https://doi.org/10.1002/1097-4547(20000615)60:6<804::aid-jnr13>3.0.co;2-1

    Article  CAS  PubMed  Google Scholar 

  16. Kalaria RN (2010) Vascular basis for brain degeneration: Faltering controls and risk factors for dementia. Nutr Rev 68(Suppl 2):S74–S87. https://doi.org/10.1111/j.1753-4887.2010.00352.x

    Article  PubMed  Google Scholar 

  17. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. https://doi.org/10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  18. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275(51):40096–40105. https://doi.org/10.1074/jbc.M006993200

    Article  CAS  PubMed  Google Scholar 

  19. Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, Schuler DR, Shinohara M, Holtzman DM et al (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33(49):19276–19283. https://doi.org/10.1523/jneurosci.3487-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kook SY, Seok Hong H, Moon M, Mook-Jung I (2013) Disruption of blood-brain barrier in Alzheimer disease pathogenesis. Tissue Barriers 1(2):e23993. https://doi.org/10.4161/tisb.23993

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen F, Ohashi N, Li W, Eckman C, Nguyen JH (2009) Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology (Baltimore, Md) 50(6):1914–1923. https://doi.org/10.1002/hep.23203

    Article  CAS  Google Scholar 

  22. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25(27):6401–6408. https://doi.org/10.1523/jneurosci.1563-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhanda S, Sandhir R (2017) Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0521-7

  24. Beal MF (1990) Somatostatin in neurodegenerative illnesses. Metab Clin Exp 39(9 Suppl 2):116–119

    Article  CAS  PubMed  Google Scholar 

  25. Binaschi A, Bregola G, Simonato M (2003) On the role of somatostatin in seizure control: Clues from the hippocampus. Rev Neurosci 14(3):285–301

    Article  CAS  PubMed  Google Scholar 

  26. Epelbaum J, Dournaud P, Fodor M, Viollet C (1994) The neurobiology of somatostatin. Crit Rev Neurobiol 8(1–2):25–44

    CAS  PubMed  Google Scholar 

  27. Fox L, Alford M, Achim C, Mallory M, Masliah E (1997) Neurodegeneration of somatostatin-immunoreactive neurons in HIV encephalitis. J Neuropathol Exp Neurol 56(4):360–368

    Article  CAS  PubMed  Google Scholar 

  28. Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288(5788):279–280

    Article  CAS  PubMed  Google Scholar 

  29. Kowall NW, Beal MF (1988) Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: Normal anatomy and alterations in Alzheimer's disease. Ann Neurol 23(2):105–114. https://doi.org/10.1002/ana.410230202

    Article  CAS  PubMed  Google Scholar 

  30. Beal MF, Mazurek MF, Tran VT, Chattha G, Bird ED, Martin JB (1985) Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer's disease. Science (New York, NY) 229(4710):289–291

    Article  CAS  Google Scholar 

  31. Geci C, How J, Alturaihi H, Kumar U (2007) Beta-amyloid increases somatostatin expression in cultured cortical neurons. J Neurochem 101(3):664–673. https://doi.org/10.1111/j.1471-4159.2006.04415.x

    Article  CAS  PubMed  Google Scholar 

  32. Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11(4):434–439. https://doi.org/10.1038/nm1206

    Article  CAS  PubMed  Google Scholar 

  33. Basivireddy J, Somvanshi RK, Romero IA, Weksler BB, Couraud PO, Oger J, Kumar U (2013) Somatostatin preserved blood brain barrier against cytokine induced alterations: Possible role in multiple sclerosis. Biochem Pharmacol 86(4):497–507. https://doi.org/10.1016/j.bcp.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  34. Adori C, Gluck L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Magloczky Z, Havas L et al (2015) Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: New aspects on Alzheimer's disease. Acta Neuropathol 129(4):541–563. https://doi.org/10.1007/s00401-015-1394-3

    Article  CAS  PubMed  Google Scholar 

  35. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874. https://doi.org/10.1096/fj.04-3458fje

    Article  CAS  PubMed  Google Scholar 

  36. Alemi M, Gaiteiro C, Ribeiro CA, Santos LM, Gomes JR, Oliveira SM, Couraud PO, Weksler B et al (2016) Transthyretin participates in beta-amyloid transport from the brain to the liver--involvement of the low-density lipoprotein receptor-related protein 1? Sci Rep 6:20164. https://doi.org/10.1038/srep20164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90(17):7951–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913. https://doi.org/10.1038/nm890

    Article  CAS  PubMed  Google Scholar 

  39. Deane R, Sagare A, Zlokovic BV (2008) The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer's disease. Curr Pharm Des 14(16):1601–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liguz-Lecznar M, Urban-Ciecko J, Kossut M (2016) Somatostatin and somatostatin-containing neurons in shaping neuronal activity and plasticity. Front Neural Circuits 10:48. https://doi.org/10.3389/fncir.2016.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsuoka N, Maeda N, Yamaguchi I, Satoh M (1994) Possible involvement of brain somatostatin in the memory formation of rats and the cognitive enhancing action of FR121196 in passive avoidance task. Brain Res 642(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  42. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20(2):131–147

    Article  CAS  PubMed  Google Scholar 

  43. Ramasamy R, Yan SF, Schmidt AM (2009) RAGE: Therapeutic target and biomarker of the inflammatory response--the evidence mounts. J Leukoc Biol 86(3):505–512. https://doi.org/10.1189/jlb.0409230

    Article  CAS  PubMed  Google Scholar 

  44. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar a{beta}-stimulated microglial activation. J Neurosci 29(38):11982–11992. https://doi.org/10.1523/jneurosci.3158-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim Biophys Acta 1768(8):1976–1990. https://doi.org/10.1016/j.bbamem.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  46. Green PG, Basbaum AI, Levine JD (1992) Sensory neuropeptide interactions in the production of plasma extravasation in the rat. Neuroscience 50(3):745–749

    Article  CAS  PubMed  Google Scholar 

  47. Szolcsanyi J, Helyes Z, Oroszi G, Nemeth J, Pinter E (1998) Release of somatostatin and its role in the mediation of the anti-inflammatory effect induced by antidromic stimulation of sensory fibres of rat sciatic nerve. Br J Pharmacol 123(5):936–942. https://doi.org/10.1038/sj.bjp.0701685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szolcsanyi J, Pinter E, Helyes Z, Oroszi G, Nemeth J (1998) Systemic anti-inflammatory effect induced by counter-irritation through a local release of somatostatin from nociceptors. Br J Pharmacol 125(4):916–922. https://doi.org/10.1038/sj.bjp.0702144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Epelbaum J, Guillou JL, Gastambide F, Hoyer D, Duron E, Viollet C (2009) Somatostatin, Alzheimer's disease and cognition: An old story coming of age? Prog Neurobiol 89(2):153–161. https://doi.org/10.1016/j.pneurobio.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  50. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K et al (2015) ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 208(6):821–838. https://doi.org/10.1083/jcb.201404140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281(13):8379–8388. https://doi.org/10.1074/jbc.M513122200

    Article  CAS  PubMed  Google Scholar 

  52. Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction ‘opening’: Signaling via rho and rho kinase. J Cell Sci 116(Pt 22):4615–4628. https://doi.org/10.1242/jcs.00755

    Article  CAS  PubMed  Google Scholar 

  53. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL et al (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115(11):3285–3290. https://doi.org/10.1172/jci25247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qosa H, Abuznait AH, Hill RA, Kaddoumi A (2012) Enhanced brain amyloid-beta clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease. J Alzheimers Dis 31(1):151–165. https://doi.org/10.3233/jad-2012-120319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qosa H, LeVine H 3rd, Keller JN, Kaddoumi A (2014) Mixed oligomers and monomeric amyloid-beta disrupts endothelial cells integrity and reduces monomeric amyloid-beta transport across hCMEC/D3 cell line as an in vitro blood-brain barrier model. Biochim Biophys Acta 1842(9):1806–1815. https://doi.org/10.1016/j.bbadis.2014.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Etique N, Verzeaux L, Dedieu S, Emonard H (2013) LRP-1: A checkpoint for the extracellular matrix proteolysis. Biomed Res Int 2013:152163–152167. https://doi.org/10.1155/2013/152163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barmina OY, Walling HW, Fiacco GJ, Freije JM, Lopez-Otin C, Jeffrey JJ, Partridge NC (1999) Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization. J Biol Chem 274(42):30087–30093

    Article  CAS  PubMed  Google Scholar 

  58. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S et al (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281(27):18626–18637. https://doi.org/10.1074/jbc.M512308200

    Article  CAS  PubMed  Google Scholar 

  59. Yang Z, Strickland DK, Bornstein P (2001) Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 276(11):8403–8408. https://doi.org/10.1074/jbc.M008925200

    Article  CAS  PubMed  Google Scholar 

  60. Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM, Hu CJ (2009) The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 378(1):57–61. https://doi.org/10.1016/j.bbrc.2008.10.173

    Article  CAS  PubMed  Google Scholar 

  61. Gao W, Eisenhauer PB, Conn K, Lynch JA, Wells JM, Ullman MD, McKee A, Thatte HS et al (2004) Insulin degrading enzyme is expressed in the human cerebrovascular endothelium and in cultured human cerebrovascular endothelial cells. Neurosci Lett 371(1):6–11. https://doi.org/10.1016/j.neulet.2004.07.034

    Article  CAS  PubMed  Google Scholar 

  62. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ et al (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nat Med 6(2):143–150. https://doi.org/10.1038/72237

    Article  CAS  PubMed  Google Scholar 

  63. Lynch JA, George AM, Eisenhauer PB, Conn K, Gao W, Carreras I, Wells JM, McKee A et al (2006) Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. J Neurosci Res 83(7):1262–1270. https://doi.org/10.1002/jnr.20809

    Article  CAS  PubMed  Google Scholar 

  64. Hernandez-Guillamon M, Martinez-Saez E, Delgado P, Domingues-Montanari S, Boada C, Penalba A, Boada M, Pagola J et al (2012) MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol (Zurich, Switzerland) 22(2):133–141. https://doi.org/10.1111/j.1750-3639.2011.00512.x

    Article  CAS  Google Scholar 

  65. Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H et al (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26(43):10939–10948. https://doi.org/10.1523/jneurosci.2085-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U et al (2012) Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 43(2):514–523. https://doi.org/10.1161/strokeaha.111.627562

    Article  CAS  PubMed  Google Scholar 

  67. Fromigue O, Hamidouche Z, Marie PJ (2008) Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. J Biol Chem 283(45):30549–30556. https://doi.org/10.1074/jbc.M801436200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qosa H, Abuasal BS, Romero IA, Weksler B, Couraud PO, Keller JN, Kaddoumi A (2014) Differences in amyloid-beta clearance across mouse and human blood-brain barrier models: Kinetic analysis and mechanistic modeling. Neuropharmacology 79:668–678. https://doi.org/10.1016/j.neuropharm.2014.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from Canadian Institute of Health Research (MOP 74465) and NSERC (402594-11, 16-05171) Canada to UK. SP is the recipient of CIHR Doctoral Fellowship. FACS study was aided by UBCFlow.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written by SP and UK. Immunofluorescence colocalization, biochemical studies were done by SP and Western blot in part was done by RKS.

Corresponding author

Correspondence to Ujendra Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paik, S., Somvanshi, R.K. & Kumar, U. Somatostatin Maintains Permeability and Integrity of Blood-Brain Barrier in β-Amyloid Induced Toxicity. Mol Neurobiol 56, 292–306 (2019). https://doi.org/10.1007/s12035-018-1045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1045-5

Keywords

Navigation