Skip to main content

Advertisement

Log in

Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer’s disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/−)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/−) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aβ) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/−) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aβ in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aβ pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555. https://doi.org/10.1016/j.cell.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZX, Tan L, Liu J, Yu JT (2016) The essential role of soluble Abeta oligomers in Alzheimer’s disease. Mol Neurobiol 53:1905–1924. https://doi.org/10.1007/s12035-015-9143-0

    Article  CAS  PubMed  Google Scholar 

  3. Zoltowska KM, Berezovska O (2017) Dynamic nature of presenilin1/gamma-secretase: implication for Alzheimer’s disease pathogenesis. Mol Neurobiol 55:2275–2284. https://doi.org/10.1007/s12035-017-0487-5

    Article  CAS  PubMed  Google Scholar 

  4. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12:269–283. https://doi.org/10.1038/nrn3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stump G, Durrer A, Klein AL, Lutolf S, Suter U, Taylor V (2002) Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 114:153–159. https://doi.org/10.1016/S0925-4773(02)00043-6

    Article  CAS  PubMed  Google Scholar 

  6. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647. https://doi.org/10.1016/j.devcel.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Berezovska O, Xia MQ, Hyman BT (1998) Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropathol Exp Neurol 57:738–745. https://doi.org/10.1097/00005072-199808000-00003

    Article  CAS  PubMed  Google Scholar 

  8. Nagarsheth MH, Viehman A, Lippa SM, Lippa CF (2006) Notch-1 immunoexpression is increased in Alzheimer’s and Pick’s disease. J Neurol Sci 244:111–116. https://doi.org/10.1016/j.jns.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Brai E, Alina Raio N, Alberi L (2016) Notch1 hallmarks fibrillary depositions in sporadic Alzheimer’s disease. Acta Neuropathol Commun 4:64. https://doi.org/10.1186/s40478-016-0327-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leal MC, Surace EI, Holgado MP, Ferrari CC, Tarelli R, Pitossi F, Wisniewski T, Castano EM et al (2012) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Abeta metabolism. Biochim Biophys Acta 1823:227–235. https://doi.org/10.1016/j.bbamcr.2011.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Janota C, Lemere CA, Brito MA (2016) Dissecting the contribution of vascular alterations and aging to Alzheimer’s disease. Mol Neurobiol 53:3793–3811. https://doi.org/10.1007/s12035-015-9319-7

    Article  CAS  PubMed  Google Scholar 

  12. Vagnucci AH Jr, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361:605–608. https://doi.org/10.1016/S0140-6736(03)12521-4

    Article  CAS  PubMed  Google Scholar 

  13. Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci U S A 105:3587–3592. https://doi.org/10.1073/pnas.0709788105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nakajima M, Yuasa S, Ueno M, Takakura N, Koseki H, Shirasawa T (2003) Abnormal blood vessel development in mice lacking presenilin-1. Mech Dev 120:657–667. https://doi.org/10.1016/S0925-4773(03)00064-9

    Article  CAS  PubMed  Google Scholar 

  15. Kalaria RN (1992) The blood-brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev 4:226–260

    CAS  PubMed  Google Scholar 

  16. ZhuGe Q, Zhong M, Zheng W, Yang GY, Mao X, Xie L, Chen G, Chen Y et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132:3231–3241. https://doi.org/10.1093/brain/awp246

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. https://doi.org/10.1038/nm0901-987

    Article  CAS  PubMed  Google Scholar 

  18. Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC (2017) Hippocampal proteomic analysis reveals distinct pathway deregulation profiles at early and late stages in a rat model of Alzheimer’s-like amyloid pathology. Mol Neurobiol 55:3451–3476. https://doi.org/10.1007/s12035-017-0580-9

    Article  CAS  PubMed  Google Scholar 

  19. Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, Atifeh R et al (2010) A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis 20:113–126. https://doi.org/10.3233/JAD-2010-1349

    Article  CAS  PubMed  Google Scholar 

  20. Galeano P, Martino Adami PV, Do Carmo S, Blanco E, Rotondaro C, Capani F, Castano EM, Cuello AC et al (2014) Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer’s disease. Front Behav Neurosci 8:321. https://doi.org/10.3389/fnbeh.2014.00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iulita MF, Allard S, Richter L, Munter LM, Ducatenzeiler A, Weise C, Do Carmo S, Klein WL et al (2014) Intracellular Abeta pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commun 2:61. https://doi.org/10.1186/2051-5960-2-61

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martino Adami PV, Galeano P, Wallinger ML, Quijano C, Rabossi A, Pagano ES, Olivar N, Reyes Toso C et al (2017) Worsening of memory deficit induced by energy-dense diet in a rat model of early-Alzheimer’s disease is associated to neurotoxic Abeta species and independent of neuroinflammation. Biochim Biophys Acta 1863:731–743. https://doi.org/10.1016/j.bbadis.2016.12.014

    Article  CAS  Google Scholar 

  23. Martino Adami PV, Quijano C, Magnani N, Galeano P, Evelson P, Cassina A, Do Carmo S, Leal MC et al (2017) Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer’s disease. J Cereb Blood Flow Metab 37:69–84. https://doi.org/10.1177/0271678X15615132

    Article  PubMed  Google Scholar 

  24. Do Carmo S, Cuello AC (2013) Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 8:37. https://doi.org/10.1186/1750-1326-8-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whishaw IQ, Kolb B (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford

    Google Scholar 

  26. Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P (2014) MicroPET imaging and transgenic models: a blueprint for Alzheimer’s disease clinical research. Trends Neurosci 37:629–641. https://doi.org/10.1016/j.tins.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  27. Dumont E, Fuchs KP, Bommer G, Christoph B, Kremmer E, Kempkes B (2000) Neoplastic transformation by Notch is independent of transcriptional activation by RBP-J signalling. Oncogene 19:556–561. https://doi.org/10.1038/sj.onc.1203352

    Article  CAS  PubMed  Google Scholar 

  28. Wilson AA, Kwok LW, Hovav AH, Ohle SJ, Little FF, Fine A, Kotton DN (2008) Sustained expression of alpha1-antitrypsin after transplantation of manipulated hematopoietic stem cells. Am J Respir Cell Mol Biol 39:133–141. https://doi.org/10.1165/rcmb.2007-0133OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mostoslavsky G, Kotton DN, Fabian AJ, Gray JT, Lee JS, Mulligan RC (2005) Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol Ther 11:932–940. https://doi.org/10.1016/j.ymthe.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  30. Nasri M, Karimi A, Allahbakhshian Farsani M (2014) Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology 66:1031–1038. https://doi.org/10.1007/s10616-013-9652-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paxinos G, Watson C (1997) Compact third edition: the rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  32. Duva CA, Floresco SB, Wunderlich GR, Lao TL, Pinel JP, Phillips AG (1997) Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats. Behav Neurosci 111:1184–1196

    Article  CAS  Google Scholar 

  33. Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, Wang YT (2010) Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci U S A 107:16697–16702. https://doi.org/10.1073/pnas.1008200107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spiers HJ, Olafsdottir HF, Lever C (2017) Hippocampal CA1 activity correlated with the distance to the goal and navigation performance. Hippocampus. https://doi.org/10.1002/hipo.22813

  35. Terry AV Jr (2009) Spatial navigation (water maze) tasks. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  36. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  37. Waynforth HB, Flecknell PA (1992) Experimental and surgical technique in the rat. Chapter 1: administration of substances. Academic Press, London, pp. 1–99

    Google Scholar 

  38. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

    Article  CAS  PubMed  Google Scholar 

  39. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957

    Article  CAS  PubMed  Google Scholar 

  40. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R et al (2013) HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–D807. https://doi.org/10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  41. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610. https://doi.org/10.1093/nar/gkn810

    Article  CAS  PubMed  Google Scholar 

  42. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526. https://doi.org/10.1093/nar/gkl923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahagun G, Moore SA, Fabry Z, Schelper RL, Hart MN (1989) Purification of murine endothelial cell cultures by flow cytometry using fluorescein-labeled Griffonia simplicifolia agglutinin. Am J Pathol 134:1227–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pennell NA, Hurley SD, Streit WJ (1994) Lectin staining of sheep microglia. Histochemistry 102:483–486

    Article  CAS  Google Scholar 

  45. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. https://doi.org/10.1016/0166-2236(96)10049-7

    Article  CAS  PubMed  Google Scholar 

  46. Holthöfer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A (1982) Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Investig 47:60–66

    PubMed  Google Scholar 

  47. Costa RM, Honjo T, Silva AJ (2003) Learning and memory deficits in Notch mutant mice. Curr Biol 13:1348–1354. https://doi.org/10.1016/S0960-9822(03)00492-5

    Article  CAS  PubMed  Google Scholar 

  48. Ge X, Hannan F, Xie Z, Feng C, Tully T, Zhou H, Zhong Y (2004) Notch signaling in Drosophila long-term memory formation. Proc Natl Acad Sci U S A 101:10172–10176. https://doi.org/10.1073/pnas.0403497101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Presente A, Boyles RS, Serway CN, de Belle JS, Andres AJ (2004) Notch is required for long-term memory in Drosophila. Proc Natl Acad Sci U S A 101:1764–1768. https://doi.org/10.1073/pnas.0308259100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang J, Yin JC, Wesley CS (2015) Notch Intracellular Domain (NICD) suppresses long-term memory formation in adult Drosophila flies. Cell Mol Neurobiol 35:763–768. https://doi.org/10.1007/s10571-015-0183-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hallaq R, Volpicelli F, Cuchillo-Ibanez I, Hooper C, Mizuno K, Uwanogho D, Causevic M, Asuni A et al (2015) The Notch intracellular domain represses CRE-dependent transcription. Cell Signal 27:621–629. https://doi.org/10.1016/j.cellsig.2014.11.034

    Article  CAS  PubMed  Google Scholar 

  52. Ettcheto M, Abad S, Petrov D, Pedros I, Busquets O, Sanchez-Lopez E, Casadesus G, Beas-Zarate C et al (2017) Early preclinical changes in hippocampal CREB-binding protein expression in a mouse model of familial Alzheimer’s disease. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0690-4

    Article  Google Scholar 

  53. Wilson EN, Abela AR, Do Carmo S, Allard S, Marks AR, Welikovitch LA, Ducatenzeiler A, Chudasama Y et al (2017) Intraneuronal amyloid beta accumulation disrupts hippocampal CRTC1-dependent gene expression and cognitive function in a rat model of Alzheimer disease. Cereb Cortex 27:1501–1511. https://doi.org/10.1093/cercor/bhv332

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90:647–660. https://doi.org/10.1016/j.ygeno.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  55. Fischer DF, van Dijk R, Sluijs JA, Nair SM, Racchi M, Levelt CN, van Leeuwen FW, Hol EM (2005) Activation of the Notch pathway in Down syndrome: cross-talk of Notch and APP. FASEB J 19:1451–1458. https://doi.org/10.1096/fj.04-3395.com

    Article  CAS  PubMed  Google Scholar 

  56. Kumar-Singh S (2008) Cerebral amyloid angiopathy: pathogenetic mechanisms and link to dense amyloid plaques. Genes Brain Behav 7(Suppl 1):67–82. https://doi.org/10.1111/j.1601-183X.2007.00380.x

    Article  CAS  PubMed  Google Scholar 

  57. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171. https://doi.org/10.1016/S0301-0082(98)00034-3

    Article  CAS  PubMed  Google Scholar 

  58. Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J, Ling EA (2013) Notch-1 signaling regulates microglia activation via NF-kappaB pathway after hypoxic exposure in vivo and in vitro. PLoS One 8:e78439. https://doi.org/10.1371/journal.pone.0078439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709–2718. https://doi.org/10.1242/dev.004184

    Article  CAS  PubMed  Google Scholar 

  60. Weinmaster G, Kopan R (2006) A garden of Notch-ly delights. Development 133:3277–3282. https://doi.org/10.1242/dev.02515

    Article  CAS  PubMed  Google Scholar 

  61. Drachman DA, Smith TW, Alkamachi B, Kane K (2017) Microvascular changes in Down syndrome with Alzheimer-type pathology: insights into a potential vascular mechanism for Down syndrome and Alzheimer’s disease. Alzheimers Dement 13:1389–1396. https://doi.org/10.1016/j.jalz.2017.05.003

    Article  PubMed  Google Scholar 

  62. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360. https://doi.org/10.1038/nrn1387

    Article  CAS  PubMed  Google Scholar 

  63. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer’s disease patients and experimental models. J Cereb Blood Flow Metab 31:1354–1370. https://doi.org/10.1038/jcbfm.2011.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198. https://doi.org/10.1016/S1474-4422(10)70277-5

    Article  CAS  PubMed  Google Scholar 

  65. Patching SG (2017) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:1046–1077. https://doi.org/10.1007/s12035-015-9672-6

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, Furukawa K (2004) Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 101:9458–9462. https://doi.org/10.1073/pnas.0308126101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dahlhaus M, Hermans JM, Van Woerden LH, Saiepour MH, Nakazawa K, Mansvelder HD, Heimel JA, Levelt CN (2008) Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex. J Neurosci 28:10794–10802. https://doi.org/10.1523/JNEUROSCI.1348-08.2008

    Article  CAS  PubMed  Google Scholar 

  68. Guzman M, Blazquez C (2004) Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids 70:287–292. https://doi.org/10.1016/j.plefa.2003.05.001

    Article  CAS  PubMed  Google Scholar 

  69. Izumi Y, Ishii K, Katsuki H, Benz AM, Zorumski CF (1998) beta-Hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices. J Clin Invest 101:1121–1132. https://doi.org/10.1172/JCI1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arakawa T, Goto T, Okada Y (1991) Effect of ketone body (D-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig. Neurosci Lett 130:53–56. https://doi.org/10.1016/0304-3940(91)90225-I

    Article  CAS  PubMed  Google Scholar 

  71. Massieu L, Del Rio P, Montiel T (2001) Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience 106:669–677. https://doi.org/10.1016/S0306-4522(01)00323-2

    Article  CAS  PubMed  Google Scholar 

  72. Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843. https://doi.org/10.1002/jnr.10081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the helpful comments of Dr. Arthur S. Edison (Departments of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia) on the NMR experiments.

Funding

This study was supported by funding from the Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-0285, PICT-2016-4647, and PIBT/09 2013 to LM; PICT-2015-2812 to FJP; PICT-2013-318 to EMC), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP-0378 to LM), Canadian Institutes of Health Research (201603PJT-364544 to ACC). PVMA and JCC are supported by CONICET fellowships. MIF is member of the Technical Career of CONICET. PG, MCL, CCF, MCD, MP, CS, MA, EMC, FJP, and LM are members of the Research Career of CONICET. SDC is the holder of the Charles E. Frosst/Merck Research Associate position. ACC is member of the Canadian Consortium of Neurodegeneration in Aging (CCNA) and holder of the McGill University Charles E. Frosst/Merck Chair in Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Morelli.

Electronic Supplementary Material

ESM 1

(PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galeano, P., Leal, M.C., Ferrari, C.C. et al. Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer. Mol Neurobiol 55, 8637–8650 (2018). https://doi.org/10.1007/s12035-018-1002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1002-3

Keywords

Navigation