Skip to main content

Advertisement

Log in

Differential Behavioral and Biochemical Responses to Caffeine in Male and Female Rats from a Validated Model of Attention Deficit and Hyperactivity Disorder

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epidemiological studies suggest sex differences in attention deficit and hyperactivity disorder (ADHD) symptomatology. The potential benefits of caffeine have been reported in the management of ADHD, but its effects were not properly addressed with respect to sex differences. The present study examined the effects of caffeine (0.3 g/L) administered since childhood in the behavior and brain-derived neurotrophic factor (BDNF) and its related proteins in both sexes of a rat model of ADHD (spontaneously hypertensive rats—SHR). Hyperlocomotion, recognition, and spatial memory disturbances were observed in adolescent SHR rats from both sexes. However, females showed lack of habituation and worsened spatial memory. Although caffeine was effective against recognition memory impairment in both sexes, spatial memory was recovered only in female SHR rats. Besides, female SHR rats showed exacerbated hyperlocomotion after caffeine treatment. SHR rats from both sexes presented increases in the BDNF, truncated and phospho-TrkB receptors and also phospho-CREB levels in the hippocampus. Caffeine normalized BDNF in males and truncated TrkB receptor at both sexes. These findings provide insight into the potential of caffeine against fully cognitive impairment displayed by females in the ADHD model. Besides, our data revealed that caffeine intake since childhood attenuated behavioral alterations in the ADHD model associated with changes in BDNF and TrkB receptors in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thomas R, Sanders S, Doust J, Beller E, Glasziou P (2015) Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135:e994–e100

    Article  Google Scholar 

  2. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  3. Biederman J, Faraone SV, Monuteaux MC, Bober M, Cadogen E (2004) Gender effects on attention-deficit/hyperactivity disorder in adults, revisited. Biol Psychiatry 55:692–700

    Article  Google Scholar 

  4. Gershon J (2002) A meta-analytic review of gender differences in ADHD. J Atten Disord 5:143–154

    Article  CAS  Google Scholar 

  5. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage 36:1065–1073

    Article  Google Scholar 

  6. Andersen SL (2005) Stimulants and the developing brain. Trends Pharmacol Sci 26:237–243

    Article  CAS  Google Scholar 

  7. Nussbaum NL (2012) ADHD and female specific concerns: a review of the literature and clinical implications. J Atten Disord 16:87–100

    Article  Google Scholar 

  8. Shaw P, Gornick M, Lerch J, Addington A, Seal J, Greenstein D, Sharp W, Evans A et al (2007) Polymorphisms of the dopamine D4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:921–931

    Article  Google Scholar 

  9. Balaratnasingam S, Janca A (2012) Brain derived neurotrophic factor: a novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Therap 134:116–124

    Article  CAS  Google Scholar 

  10. Bryn V, Halvorsen B, Ueland T, Isaksen J, Kolkova K, Ravn K, Skjeldal OH (2015) Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol 19:411–414

    Article  CAS  Google Scholar 

  11. Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N, Raybould R, Langley K et al (2005) Association of the paternally transmitted copy of common valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatry 10:939–943

    Article  CAS  Google Scholar 

  12. Kim BN, Cummins TDR, Kim JW, Bellgrove MA, Hong SB, Song SH, Shin MS, Cho SC et al (2011) Val/Val genotype of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with a better response to OROS-MPH in Korean ADHD children. Int J Neuropsychopharmacol 14:1399–1410

    Article  CAS  Google Scholar 

  13. Lanktree M, Squassina A, Krinsky M, Strauss J, Jain U, Macciardi F, Kennedy JL, Muglia P (2008) Association study of brain-derived neurotrophic factor (BDNF) and LIN-7 homolog (LIN-7) genes with adult attention-deficit/hyperactivity disorder. Am J Med Genet Part B, Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 147B:945–951

    Article  Google Scholar 

  14. Tsai SJ (2016) Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine Growth Factor Rev S1359-6101(16):30138–30131

    Google Scholar 

  15. Liu DY, Shen XM, Yuan FF, Guo OY, Zhong Y, Chen JG, Zhu LQ, Wu J (2015) The physiology of BDNF and its relationship with ADHD. Mol Neurobiol 52:1467–1476

    Article  CAS  Google Scholar 

  16. Amiri A, Torabi Parizi G, Kousha M, Saadat F, Modabbernia MJ, Najafi K, Atrkar Roushan Z (2013) Changes in plasma brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with attention deficit–hyperactivity disorder (ADHD). Prog Neuro-Psychopharmacol Biol Psych 47:20–24

    Article  CAS  Google Scholar 

  17. Bilgiç A, Toker A, Işık Ü, Kılınç İ (2017) Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 26:355–363

    Article  Google Scholar 

  18. Ramos-Quiroga JA, Corominas-Roso M, Palomar G, Gomez-Barros N, Ribases M, Sanchez-Mora C, Bosch R, Nogueira M et al (2014) Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit hyperactivity disorder after treatment with atomoxetine. Psychopharmacology 231:1389–1395

    Article  CAS  Google Scholar 

  19. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  20. Ioannidis K, Chamberlain SR, Müller U (2014) Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder—was this a correct decision? A literature review. J Psychopharmacol 28:830–836

    Article  CAS  Google Scholar 

  21. Garfinkel BD, Webster CD, Sloman L (1981) Responses to methylphenidate and varied doses of caffeine in children with attention deficit disorder. Can J Psychiatr 26:395–401

    Article  CAS  Google Scholar 

  22. Harvey DHP, Marsh RW (1978) The effects of de-caffeinated coffee versus whole coffee on hyperactive children. Dev Med Child Neurol 20:81–86

    Article  CAS  Google Scholar 

  23. Firestone P, Davey J, Goodman JT, Peters S (1978) The effects of caffeine and methylphenidate on hyperactive children. J Am Acad Child Psychiatry 17:445–456

    Article  CAS  Google Scholar 

  24. Leon MR (2000) Effects of caffeine on cognitive, psychomotor, and affective performance of children with attention-deficit/hyperactivity disorder. J Atten Disord 4:27–47

    Article  Google Scholar 

  25. Del-Ponte B, Santos IS, Tovo-Rodrigues L, Anselmi L, Munhoz TN, Matijasevich A (2016) Caffeine consumption during pregnancy and ADHD at the age of 11 years: a birth cohort study. BMJ Open 6:e012749

    Article  Google Scholar 

  26. Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    Article  CAS  Google Scholar 

  27. Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci 9:9.35

    Google Scholar 

  28. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247

    Article  Google Scholar 

  29. Pandolfo P, Machado NJ, Köfalvi A, Takahashi RN, Cunha RA (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 23:317–328

    Article  CAS  Google Scholar 

  30. Pires VA, Pamplona FAF, Pandolfo P, Fernandes D, Prediger RD, Takahashi RN (2009) Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 20:134–145

    Article  CAS  Google Scholar 

  31. Pires VA, Pamplona FA, Pandolfo P, Prediger RDS, Takahashi RN (2010) Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 215:39–44

    Article  CAS  Google Scholar 

  32. Prediger RDS, Pamplona FA, Fernandes D, Takahashi RN (2005) Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD)—the spontaneously hypertensive rat (SHR). Int J Neuropsychopharmacol 8:583–594

    Article  CAS  Google Scholar 

  33. Bayless DW, Perez MC, Daniel JM (2015) Comparison of the validity of the use of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder in males and females. Behav Brain Res 286:85–92

    Article  Google Scholar 

  34. Botanas CJ, Lee H, de la Peña JB, dela Peña IJ, Woo T, Kim HJ, Han DH, Kim BN et al (2016) Rearing in an enriched environment attenuated hyperactivity and inattention in the spontaneously hypertensive rats, an animal model of attention-deficit hyperactivity disorder. Physiol Behav 155:30–37

    Article  CAS  Google Scholar 

  35. Langen B, Dost R (2011) Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. Atten Def Hyp Disord 3:1–12

    Article  Google Scholar 

  36. Yang MT, Lu DH, Chen JC, Fu WM (2015) Inhibition of hyperactivity and impulsivity by carbonic anhydrase inhibitors in spontaneously hypertensive rats, an animal model of ADHD. Psychopharmacology 232:3763–3772

    Article  CAS  Google Scholar 

  37. Bucci DJ, Hopkins ME, Keene CS, Sharma M, Orr LE (2008) Sex differences in learning and inhibition in spontaneously hypertensive rats. Behav Brain Res 187:27–32

    Article  Google Scholar 

  38. Bucci DJ, Hopkins ME, Nunez AA, Breedlove SM, Sisk CL, Nigg JT (2008) Effects of sex hormones on associative learning in spontaneously hypertensive rats. Physiol Behav 93:651–657

    Article  CAS  Google Scholar 

  39. Berger DF, Sagvolden T (1998) Sex differences in operant discrimination behaviour in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res 94:73–82

    Article  CAS  Google Scholar 

  40. Sagvolden T, Berger DF (1996) An animal model of attention deficit disorder: the female shows more behavioral problems and is more impulsive than the male. Eur Psychol 1:113–122

    Article  Google Scholar 

  41. Clements KM, Girard TA, Xing HC, Wainwright PE (2003) Spontaneously hypertensive and Wistar Kyoto rats differ in delayed matching-to-place performance and response to dietary long-chain polyunsaturated fatty acids. Dev Psychobiol 43:57–69

    Article  CAS  Google Scholar 

  42. Kim J, Park H, Yu SL, Jee S, Cheon KA, Song DH, Kim SJ, Im WY et al (2016) Effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder. Int J Dev Neurosci 53:83–89

    Article  Google Scholar 

  43. Mook DM, Jeffrey J, Neuringer A (1993) Spontaneously hypertensive rats (SHR) readily learn to vary but not repeat instrumental responses. Behav Neural Biol 59:126–135

    Article  CAS  Google Scholar 

  44. Sontag TA, Fuermaier AB, Hauser J, Kaunzinger I, Tucha O, Lange KW (2013) Spatial memory in spontaneously hypertensive rats (SHR). PLoS One 8:e74660

    Article  CAS  Google Scholar 

  45. Wyss JM, Chambless BD, Kadish I, van Groen T (2000) Age-related decline in water maze learning and memory in rats: strain differences. Neurobiol Aging 21:671–681

    Article  CAS  Google Scholar 

  46. Jeong HI, Ji ES, Kim SH, Kim TW, Baek SB, Choi SW (2014) Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats. J Exerc Rehabil 10:162–167

    Article  Google Scholar 

  47. Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK (2008) Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psych 32:1824–1828

    Article  CAS  Google Scholar 

  48. Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, Bosch R, Casas M (2013) Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 16:1267–1275

    Article  CAS  Google Scholar 

  49. Bergman O, Westberg L, Lichtenstein P, Eriksson E, Larsson H (2011) Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int J Neuropsychopharmacol 14:1367–1376

    Article  CAS  Google Scholar 

  50. Sanchez-Mora C et al (2010) Meta-analysis of brain-derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. Am J Med Genet B Neuropsychiatr Genet 153B:512–523

    Article  CAS  Google Scholar 

  51. Callaghan CK, Kelly ÁM (2012) Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat. Hippocampus 22:2127–2135

    Article  CAS  Google Scholar 

  52. Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Dis - Drug Targets 7:46–62

    Article  CAS  Google Scholar 

  53. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W et al (2009) Neuronal release of proBDNF. Nat Neurosci 12:113–115

    Article  Google Scholar 

  54. Danzer SC, Crooks KR, Lo DC, McNamara JO (2002) Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J Neurosci 22:9754–9763

    Article  CAS  Google Scholar 

  55. Connolly S, Kingsbury TJ (2010) Caffeine modulates CREB-dependent gene expression in developing cortical neurons. Biochem Biophys Res Commun 397:152–156

    Article  CAS  Google Scholar 

  56. Danelon V, Montroull LE, Unsain N, Barker PA, Mascó DH (2016) Calpain-dependent truncated form of TrkB-FL increases in neurodegenerative processes. Mol Cell Neurosci 75:81–92

    Article  CAS  Google Scholar 

  57. Gomes JR, Costa JT, Melo CV, Felizzi F, Monteiro P, Pinto MJ, Inacio AR, Wieloch T et al (2012) Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 32:4610–4622

    Article  CAS  Google Scholar 

  58. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14:10122–10142

    Article  Google Scholar 

  59. D'Andrea I, Fardella V, Fardella S, Pallante F, Ghigo A, Iacobucci R, Maffei A, Hirsch E et al (2015) Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Mol Med 7:904–917

    Article  CAS  Google Scholar 

  60. Banerjee PS, Aston J, Khundakar AA (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediate-early gene arc in the juvenile and adult brain. Eur J Neurosci 29:465–476

    Article  Google Scholar 

  61. Fumagalli F, Cattaneo A, Caffino L, Ibba M, Racagni G, Carboni E, Gennarelli M, Riva MA (2010) Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res 62:523–529

    Article  CAS  Google Scholar 

  62. Meredith G, Callen S, Scheuer D (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949:218–227

    Article  CAS  Google Scholar 

  63. Bolaños CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry 54:1317–1329

    Article  Google Scholar 

  64. Dow-Edwards DL, Busidan Y (2001) Behavioral responses to dopamine agonists in adult rats exposed to cocaine during the preweaning period. Pharmacol Biochem Behav 70:23–30

    Article  CAS  Google Scholar 

  65. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tan J et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17:661–680

    Article  CAS  Google Scholar 

  66. Botton PH et al (2017) Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior. Physiol Behav 170:47–53

    Article  CAS  Google Scholar 

  67. Cao C, Loewenstein DA, Lin X, Zhang C, Wang L, Duara R, Wu Y, Giannini A et al (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30:559–572

    Article  CAS  Google Scholar 

  68. Costa MS, Botton PH, Mioranzza S, Souza DO, Porciúncula LO (2008) Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice. Neuroscience 153:1071–1078

    Article  CAS  Google Scholar 

  69. Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545

    Article  CAS  Google Scholar 

  70. Ardais AP, Borges MF, Rocha AS, Sallaberry C, Cunha RA, Porciúncula LO (2014) Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience 270:27–39

    Article  CAS  Google Scholar 

  71. Ardais AP, Rocha AS, Borges MF, Fioreze GT, Sallaberry C, Mioranzza S, Nunes F, Pagnussat N et al (2016) Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behav Brain Res 303:76–84

    Article  CAS  Google Scholar 

  72. Mioranzza S, Nunes F, Marques DM, Fioreze GT, Rocha AS, Botton PHS, Costa MS, Porciúncula LO (2014) Prenatal caffeine intake differently affects synaptic proteins during fetal brain development. Int J Dev Neurosci 36:45–52

    Article  CAS  Google Scholar 

  73. Silva CG, Metin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP et al (2013) Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med 5:197ra104

    Article  Google Scholar 

  74. Sallaberry C, Ardais AP, Rocha A, Borges MF, Fioreze GT, Mioranzza S, Nunes F, Pagnussat N et al (2018) Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats. Prog Neuro-Psychopharmacol Biol Psychiatry 81:416–425

    Article  CAS  Google Scholar 

  75. Biederman J, Mick E, Faraone SV, Braaten E, Doyle A, Spencer T (2002) Influence of gender on attention déficit hyperactivity disorder in children referred to a psychiatric clinic. Am J Psych 159:36–42

    Article  Google Scholar 

  76. Brackney RJ, Cheung TH, Herbst K, Hill JC, Sanabria F (2012) Extinction learning deficit in a rodent model of attention-deficit hyperactivity disorder. Behav Brain Funct 8:59

    Article  Google Scholar 

  77. Wender PH (1998) Pharmacotherapy of attention deficit/hyperactivity disorder in adults. J Clin Psychiatry 59:76–79

    Article  Google Scholar 

  78. Wilens TE, Spencer TJ, Biederman J (2002) A review of the pharmacotherapy of adults with attention deficit/hyperactivity disorder. J Atten Disord 5:189–202

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Brazilian funding agencies (CAPES, CNPq, FAPERGS).

Author information

Authors and Affiliations

Authors

Contributions

F.N., D.P., A.S.A, and D.M.M. performed the experiments and revised the manuscript. F.N and L.O.P designed the study, analyzed and interpreted data, and wrote the manuscript.

Corresponding author

Correspondence to Lisiane de Oliveira Porciúncula.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, F., Pochmann, D., Almeida, A.S. et al. Differential Behavioral and Biochemical Responses to Caffeine in Male and Female Rats from a Validated Model of Attention Deficit and Hyperactivity Disorder. Mol Neurobiol 55, 8486–8498 (2018). https://doi.org/10.1007/s12035-018-1000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1000-5

Keywords

Navigation