Skip to main content
Log in

CCL2 Induces the Production of β2 Adrenergic Receptors and Modifies Astrocytic Responses to Noradrenaline

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The decline in brain noradrenaline levels is associated with the progression of certain neurodegenerative diseases. This seems to be due, at least in part, to the ability of noradrenaline to limit glial activation and to reduce the damage associated with it. Our previous studies of the mechanisms involved in this process indicate that noradrenaline induces the production of the chemokine CCL2 in astrocytes. While CCL2 can protect neurons against certain injuries, its overproduction has also proven to be harmful and to prevent noradrenaline neuroprotective effects. Therefore, in this study, we analyze if the modifications caused to astrocytes by an excessive production of CCL2 may alter their response to noradrenaline. Using primary cultures of rat cortical astrocytes, we observed that CCL2 enhances the production of beta 2 adrenergic receptors in these cells. While this potentiates noradrenaline signaling through cAMP, the activation of the transcription factor CREB is inhibited by CCL2. Furthermore, although CCL2 potentiates noradrenaline induction of glycogenolysis, this does not translate into an augmented release of lactate, one of the processes through which astrocytes help support neurons. Additionally, other neuroprotective actions of noradrenaline, such as the production of brain derived neurotrophic factor and the inhibition of the inducible nitric oxide synthase in astrocytes were modified by CCL2. These data suggest that some of the central nervous system alterations related to CCL2 could be due to its effects on adrenergic receptors and its interference with noradrenaline signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim TH, Choi J, Kim HG, Kim HR (2014) Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry. J Anal Methods Chem 2014(506870-

  2. Dello RC, Boullerne AI, Gavrilyuk V, Feinstein DL (2004) Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1beta production. J Neuroinflammation 1(1):9

    Article  CAS  Google Scholar 

  3. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP, Hauser DL (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1(4):256–262

    Article  PubMed  CAS  Google Scholar 

  5. Chalermpalanupap T, Kinkead B, Hu WT, Kummer MP, Hammerschmidt T, Heneka MT, Weinshenker D, Levey AI (2013) Targeting norepinephrine in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 5(2):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Adam-Vizi V, Seregi A (1982) Receptor independent stimulatory effect of noradrenaline on Na, K-ATPase in rat brain homogenate. Role of lipid peroxidation. Biochem Pharmacol 31(13):2231–2236

    Article  PubMed  CAS  Google Scholar 

  7. Liu X, Ye K, Weinshenker D (2015) Norepinephrine protects against amyloid-beta toxicity via TrkB. J Alzheimers Dis 44(1):251–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braun D, Madrigal JL, Feinstein DL (2014) Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 12(4):342–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Madrigal JL, Leza JC, Polak P, Kalinin S, Feinstein DL (2009) Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci 29(1):263–267

    Article  PubMed  CAS  Google Scholar 

  10. Madrigal JL, Garcia-Bueno B, Hinojosa AE, Polak P, Feinstein DL, Leza JC (2010) Regulation of MCP-1 production in brain by stress and noradrenaline-modulating drugs. J Neurochem 113(2):543–551

    Article  PubMed  CAS  Google Scholar 

  11. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326

    Article  CAS  Google Scholar 

  12. Madrigal JL, Caso JR (2014) The chemokine (C-C motif) ligand 2 in neuroinflammation and neurodegeneration. Adv Exp Med Biol 824:209–219

    Article  PubMed  CAS  Google Scholar 

  13. Bruno V, Copani A, Besong G, Scoto G, Nicoletti F (2000) Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur J Pharmacol 399(2–3):117–121

    Article  PubMed  CAS  Google Scholar 

  14. Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85(5):1299–1311

    Article  PubMed  CAS  Google Scholar 

  15. Elhofy A, Wang J, Tani M, Fife BT, Kennedy KJ, Bennett J, Huang D, Ransohoff RM et al (2005) Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J Leukoc Biol 77(2):229–237

    Article  PubMed  CAS  Google Scholar 

  16. Godefroy D, Gosselin RD, Yasutake A, Fujimura M, Combadiere C, Maury-Brachet R, Laclau M, Rakwal R et al (2012) The chemokine CCL2 protects against methylmercury neurotoxicity. Toxicol Sci 125(1):209–218

    Article  PubMed  CAS  Google Scholar 

  17. Tarzami ST, Calderon TM, Deguzman A, Lopez L, Kitsis RN, Berman JW (2005) MCP-1/CCL2 protects cardiac myocytes from hypoxia-induced apoptosis by a G(alphai)-independent pathway. Biochem Biophys Res Commun 335(4):1008–1016

    Article  PubMed  CAS  Google Scholar 

  18. Zisman DA, Kunkel SL, Strieter RM, Tsai WC, Bucknell K, Wilkowski J, Standiford TJ (1997) MCP-1 protects mice in lethal endotoxemia. J Clin Invest 99(12):2832–2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Madrigal JL, Dello RC, Gavrilyuk V, Feinstein DL (2006) Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid Redox Signal 8(5–6):885–892

    Article  PubMed  CAS  Google Scholar 

  20. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13(9):1400–1412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boulay G, Malaquin N, Loison I, Foveau B, Van RC, Rood BR, Pourtier A, Leprince D (2012) Loss of Hypermethylated in Cancer 1 (HIC1) in breast cancer cells contributes to stress-induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem 287(8):5379–5389

    Article  PubMed  CAS  Google Scholar 

  22. Dong JH, Chen X, Cui M, Yu X, Pang Q, Sun JP (2012) Beta2-adrenergic receptor and astrocyte glucose metabolism. J Mol Neurosci 48(2):456–463

    Article  PubMed  CAS  Google Scholar 

  23. Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12(12):4923–4931

    Article  PubMed  CAS  Google Scholar 

  24. Ruchti E, Roach PJ, DePaoli-Roach AA, Magistretti PJ, Allaman I (2016) Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes. IBRO Reports 1(46–53

    Article  Google Scholar 

  25. Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30(4):382–391

    Article  PubMed  CAS  Google Scholar 

  26. Cardinaux JR, Magistretti PJ (1996) Vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and noradrenaline induce the transcription factors CCAAT/enhancer binding protein (C/EBP)-beta and C/EBP delta in mouse cortical astrocytes: involvement in cAMP-regulated glycogen metabolism. J Neurosci 16(3):919–929

    Article  PubMed  CAS  Google Scholar 

  27. Bjorkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102(72–79

    Article  CAS  Google Scholar 

  28. Juric DM, Loncar D, Carman-Krzan M (2008) Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via alpha1- and beta1/beta2-adrenergic receptors. Neurochem Int 52(1–2):297–306

    Article  PubMed  CAS  Google Scholar 

  29. Feinstein DL, Galea E, Reis DJ (1993) Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J Neurochem 60(5):1945–1948

    Article  PubMed  CAS  Google Scholar 

  30. Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gavrilyuk V, Dello RC, Heneka MT, Pelligrino D, Weinberg G, Feinstein DL (2002) Norepinephrine increases I kappa B alpha expression in astrocytes. J Biol Chem 277(33):29662–29668

    Article  PubMed  CAS  Google Scholar 

  32. Sharma A, Patro N, Patro IK (2016) Lipopolysaccharide-induced apoptosis of astrocytes: therapeutic intervention by minocycline. Cell Mol Neurobiol 36(4):577–592

    Article  PubMed  CAS  Google Scholar 

  33. Suk K, Lee J, Hur J, Kim YS, Lee M, Cha S, Yeou KS, Kim H (2001) Activation-induced cell death of rat astrocytes. Brain Res 900(2):342–347

    Article  PubMed  CAS  Google Scholar 

  34. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640

    Article  PubMed  CAS  Google Scholar 

  35. Waitt AE, Reed L, Ransom BR, Brown AM (2017) Emerging roles for glycogen in the CNS. Front Mol Neurosci 10(73-

  36. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4(3-

  39. Muyderman H, Sinclair J, Jardemark K, Hansson E, Nilsson M (2001) Activation of beta-adrenoceptors opens calcium-activated potassium channels in astroglial cells. Neurochem Int 38(3):269–276

    Article  PubMed  CAS  Google Scholar 

  40. Subbarao KV, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536(1–2):220–226

    Article  PubMed  CAS  Google Scholar 

  41. Ding F, O'Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394

    Article  PubMed  CAS  Google Scholar 

  42. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14

    Article  PubMed  CAS  Google Scholar 

  43. Cuff MA, Shirazi-Beechey SP (2002) The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis. Biochem Biophys Res Commun 292(4):1048–1056

    Article  PubMed  CAS  Google Scholar 

  44. Jiwaji Z, Hasel P, Chandran S, Hardingham G (2017) The role of neuronal activity in regulating metabolism in mouse and human astrocytes. The Lancet 389, Supplement 1(S51-

  45. Muller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK (2014) Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 62(4):526–534

    Article  PubMed  Google Scholar 

  46. Feinstein DL, Kalinin S, Braun D (2016) Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 139 Suppl 2:154–178

    Article  PubMed  CAS  Google Scholar 

  47. Chen MJ, Nguyen TV, Pike CJ, Russo-Neustadt AA (2007) Norepinephrine induces BDNF and activates the PI-3K and MAPK cascades in embryonic hippocampal neurons. Cell Signal 19(1):114–128

    Article  PubMed  CAS  Google Scholar 

  48. Counts SE, Mufson EJ (2010) Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem 113(3):649–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20(4):709–726

    Article  PubMed  CAS  Google Scholar 

  50. Gavrilyuk V, Horvath P, Weinberg G, Feinstein DL (2001) A 27-bp region of the inducible nitric oxide synthase promoter regulates expression in glial cells. J Neurochem 78(1):129–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Dominique Leprince for supplying the reporter luciferase construct for β2AR.

Funding

This work was supported by the UCM (PR26/16-20278), the Spanish Ministry of Science (SAF2017-86620-R) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). MGP was supported by a Fellowship from the European Youth Employment Initiative (YEI). BGB and JRC are Ramón y Cajal fellows (Spanish Ministry of Economy, Industry and Competitiveness).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. M. Madrigal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, I.L., González-Prieto, M., García-Bueno, B. et al. CCL2 Induces the Production of β2 Adrenergic Receptors and Modifies Astrocytic Responses to Noradrenaline. Mol Neurobiol 55, 7872–7885 (2018). https://doi.org/10.1007/s12035-018-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0960-9

Keywords

Navigation