Skip to main content

Advertisement

Log in

Antidiabetic Polypill Improves Central Pathology and Cognitive Impairment in a Mixed Model of Alzheimer’s Disease and Type 2 Diabetes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is an important risk factor to suffer dementia, being Alzheimer’s disease (AD) as the most common form. Both AD and T2D are closely related to aging and with a growing elderly population it might be of relevance to explore new therapeutic approaches that may slow or prevent central complications associated with metabolic disorders. Therefore, we propose the use of the antidiabetic polypill (PP), a pharmacological cocktail, commonly used by T2D patients that include metformin, aspirin, simvastatin, and an angiotensin-converting enzyme inhibitor. In order to test the effects of PP at the central level, we have long-term treated a new mixed model of AD-T2D, the APP/PS1xdb/db mouse. We have analyzed AD pathological features and the underlying specific characteristics that relate AD and T2D. As expected, metabolic alterations were ameliorated after PP treatment in diabetic mice, supporting a role for PP in maintaining pancreatic activity. At central level, PP reduced T2D-associated brain atrophy, showing both neuronal and synaptic preservation. Tau and amyloid pathologies were also reduced after PP treatment. Furthermore, we observed a reduction of spontaneous central bleeding and inflammation after PP treatment in diabetic mice. As consequence, learning and memory processes were improved after PP treatment in AD, T2D, and AD-T2D mice. Our data provide the basis to further analyze the role of PP, as an alternative or adjuvant, to slow down or delay the central complications associated with T2D and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalaria RN, Maestre GE, Arizaga R et al (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826

    Article  PubMed  PubMed Central  Google Scholar 

  2. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66(3):300–305

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63(7):1187–1192

    Article  PubMed  Google Scholar 

  5. Schrijvers EM, Witteman JC, Sijbrands EJ et al (2010) Insulin metabolism and the risk of Alzheimer disease: the Rotterdam study. Neurology 75(22):1982–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Papon MA, El Khoury NB, Marcouiller F et al (2013) Deregulation of protein phosphatase 2A and hyperphosphorylation of tau protein following onset of diabetes in NOD mice. Diabetes 62(2):609–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ramos-Rodriguez JJ, Infante-Garcia C, Galindo-Gonzalez L et al (2016) Increased spontaneous central bleeding and cognition impairment in APP/PS1 mice with poorly controlled diabetes mellitus. Mol Neurobiol 53(4):2685–2697

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Alloza M, Gregory J, Kuchibhotla KV et al (2011) Cerebrovascular lesions induce transient beta-amyloid deposition. Brain 134(Pt 12):3697–3707

    Article  PubMed  Google Scholar 

  9. Alexandru N, Badila E, Weiss E et al (2016) Vascular complications in diabetes: microparticles and microparticle associated microRNAs as active players. Biochem Biophys Res Commun 472(1):1–10

    Article  PubMed  CAS  Google Scholar 

  10. Farris W, Mansourian S, Chang Y et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100(7):4162–4167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao WQ, De Felice FG, Fernandez S et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260

    Article  PubMed  CAS  Google Scholar 

  12. Correia SC, Santos RX, Perry G et al (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev 10(2):264–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kuehn BM (2006) “Polypill” could slash diabetes risks. JAMA 296(4):377–380

    PubMed  CAS  Google Scholar 

  14. Ramos-Rodriguez JJ, Jimenez-Palomares M, Murillo-Carretero MI et al (2015) Central vascular disease and exacerbated pathology in a mixed model of type 2 diabetes and Alzheimer’s disease. Psychoneuroendocrinology 62:69–79

    Article  PubMed  CAS  Google Scholar 

  15. Infante-Garcia C, Ramos-Rodriguez JJ, Galindo-Gonzalez L, Garcia-Alloza M (2016) Long-term central pathology and cognitive impairment are exacerbated in a mixed model of Alzheimer’s disease and type 2 diabetes. Psychoneuroendocrinology 65:15–25

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101(4):564–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Papadopoulos P, Tong XK, Hamel E (2014) Selective benefits of simvastatin in bitransgenic APPSwe,Ind/TGF-beta1 mice. Neurobiol Aging 35(1):203–212

    Article  PubMed  CAS  Google Scholar 

  18. Cyrus T, Sung S, Zhao L et al (2002) Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 106(10):1282–1287

    Article  PubMed  CAS  Google Scholar 

  19. Dong YF, Kataoka K, Tokutomi Y et al (2011) Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J 25(9):2911–2920

    Article  PubMed  CAS  Google Scholar 

  20. Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32(6):435–443

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dere E, Huston JP, De Souza Silva MA (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Brain Res Protoc 16(1–3):10–19

    Article  PubMed  Google Scholar 

  22. Ramos-Rodriguez JJ, Ortiz O, Jimenez-Palomares M et al (2013) Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology 38(11):2462–2475

    Article  PubMed  Google Scholar 

  23. Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D et al (2013) Rapid beta-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol 72(4):272–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Garcia-Alloza M, Ferrara BJ, Dodwell SA et al (2007) A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Dis 28(3):286–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ramos-Rodriguez JJ, Spires-Jones T, Pooler AM, et al. (2016) Progressive neuronal pathology and synaptic loss induced by prediabetes and type 2 diabetes in a mouse model of Alzheimer’s disease. Mol Neurobiol

  26. Luchsinger JA, Reitz C, Patel B et al (2007) Relation of diabetes to mild cognitive impairment. Arch Neurol 64(4):570–575

    Article  PubMed  Google Scholar 

  27. Plastino M, Fava A, Pirritano D et al (2010) Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and diabetes mellitus type-2. J Neurol Sci 288(1–2):112–116

    Article  PubMed  CAS  Google Scholar 

  28. Ng TP, Feng L, Yap KB et al (2014) Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 41(1):61–68

    Article  PubMed  CAS  Google Scholar 

  29. McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497

    Article  PubMed  CAS  Google Scholar 

  30. Chen JM, Chang CW, Chang TH et al (2014) Effects of statins on incident dementia in patients with type 2 DM: a population-based retrospective cohort study in Taiwan. PLoS One 9(2):e88434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kuan YC, Huang KW, Yen DJ et al (2016) Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers reduced dementia risk in patients with diabetes mellitus and hypertension. Int J Cardiol 220:462–466

    Article  PubMed  Google Scholar 

  32. Strong R, Miller RA, Astle CM et al (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7(5):641–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fahmy UA (2016) Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data. Drug Des Devel Ther 10:2507–2513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sena CM, Matafome P, Louro T et al (2011) Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol 163(2):424–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Coe LM, Denison JD, McCabe LR (2011) Low dose aspirin therapy decreases blood glucose levels but does not prevent type i diabetes-induced bone loss. Cell Physiol Biochem 28(5):923–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tzourio C, Anderson C, Chapman N et al (2003) Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med 163(9):1069–1075

    Article  PubMed  CAS  Google Scholar 

  37. Marchetti P, Del Guerra S, Marselli L et al (2004) Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 89(11):5535–5541

    Article  PubMed  CAS  Google Scholar 

  38. Fang SC, Xie H, Chen F et al (2017) Simvastatin ameliorates memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Neuroscience 355:200–211

    Article  PubMed  CAS  Google Scholar 

  39. Ghodke RM, Tour N, Devi K (2012) Effects of statins and cholesterol on memory functions in mice. Metab Brain Dis 27(4):443–451

    Article  PubMed  CAS  Google Scholar 

  40. Goel R, Bhat SA, Rajasekar N et al (2015) Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol Biochem Behav 133:132–145

    Article  PubMed  CAS  Google Scholar 

  41. Ramos-Rodriguez JJ, Molina-Gil S, Ortiz-Barajas O et al (2014) Central proliferation and neurogenesis is impaired in type 2 diabetes and prediabetes animal models. PLoS One 9(2):e89229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Takeda S, Sato N, Uchio-Yamada K et al (2010) Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 107(15):7036–7041

    Article  PubMed  PubMed Central  Google Scholar 

  43. Farr SA, Banks WA, Morley JE (2006) Effects of leptin on memory processing. Peptides 27(6):1420–1425

  44. Li XL, Aou S, Oomura Y et al (2002) Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113(3):607–615

  45. Lieb W, Beiser AS, Vasan RS et al (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302(23):2565–2572

  46. Fewlass DC, Noboa K, Pi-Sunyer FX et al (2004) Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J 18(15):1870–1878

  47. Moore EM, Mander AG, Ames D et al (2013) Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36(10):2981–2987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhuang S, Wang X, Wang HF et al (2016) Angiotensin converting enzyme serum activities: relationship with Alzheimer’s disease. Brain Res 1650:196–202

    Article  PubMed  CAS  Google Scholar 

  49. Wang J, Tan L, Wang HF et al (2015) Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis 44(2):385–396

    Article  PubMed  CAS  Google Scholar 

  50. Rao GH, Fareed J (2012) Aspirin prophylaxis for the prevention of thrombosis: expectations and limitations. Thrombosis 2012:104707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Aisen PS (2008) An aspirin a day for Alzheimer’s disease? Lancet Neurol 7(1):20–21

    Article  PubMed  Google Scholar 

  52. Lim GP, Yang F, Chu T et al (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20(15):5709–5714

    Article  PubMed  CAS  Google Scholar 

  53. Yan Q, Zhang J, Liu H et al (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23(20):7504–7509

    Article  PubMed  CAS  Google Scholar 

  54. Shinohara M, Sato N, Kurinami H et al (2010) Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 285(29):22091–22102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yamamoto N, Fujii Y, Kasahara R et al (2016) Simvastatin and atorvastatin facilitates amyloid beta-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia 64(6):952–962

    PubMed  Google Scholar 

  56. Son SM, Shin HJ, Byun J et al (2016) Metformin facilitates amyloid-beta generation by beta- and gamma-secretases via autophagy activation. J Alzheimers Dis 51(4):1197–1208

    Article  PubMed  CAS  Google Scholar 

  57. Picone P, Nuzzo D, Caruana L et al (2015) Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-kappaB activation: Use of insulin to attenuate metformin’s effect. Biochim Biophys Acta 1853(5):1046–1059

    Article  PubMed  CAS  Google Scholar 

  58. Hettich MM, Matthes F, Ryan DP et al (2014) The anti-diabetic drug metformin reduces BACE1 protein level by interfering with the MID1 complex. PLoS One 9(7):e102420

    Article  PubMed  PubMed Central  Google Scholar 

  59. Barini E, Antico O, Zhao Y et al (2016) Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol Neurodegener 11:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kickstein E, Krauss S, Thornhill P et al (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 107(50):21830–21835

    Article  PubMed  PubMed Central  Google Scholar 

  61. Boimel M, Grigoriadis N, Lourbopoulos A et al (2009) Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol 68(3):314–325

    Article  PubMed  CAS  Google Scholar 

  62. Oliveira WH, Nunes AK, Franca ME et al (2016) Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res 1644:149–160

    Article  PubMed  CAS  Google Scholar 

  63. El-Dessouki AM, Galal MA, Awad AS and Zaki HF (2016) Neuroprotective effects of simvastatin and Cilostazol in L-methionine-induced vascular dementia in rats. Mol Neurobiol

  64. Torika N, Asraf K, Roasso E, Danon A and Fleisher-Berkovich S (2016) Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer’s disease. J Neuroimmune Pharmacol

  65. Chen J, Cui X, Zacharek A et al (2011) White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke 42(2):445–452

    Article  PubMed  CAS  Google Scholar 

  66. Chillon JM, Baumbach GL (2001) Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arteriolar dilatation in hypertensive rats. Hypertension 37(6):1388–1393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the animal facility (SEPA) of the University of Cadiz for their support and Consuelo Rivera Sanchez and Miguel Angel Rodriguez Gomez for their technical support (University of Cadiz). We thank Dr. Dominic Walsh (Brigham and Women’s Hospital, Boston, USA) for providing antibodies. MG-A, National Programme for Research Aimed at the Challenges of Society (BFU 2016-75038-R), financed by the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER). Ministerio de Educación, Cultura y Deporte en el marco del Programa Estatal de Promoción del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (PRX16/00246). Fundación Eugenio Rodríguez Pascual (2015). Proyectos de Excelencia, Consejería de Economía, Innovación, Ciencia y Empleo Junta de Andalucía (P11-CTS-7847). TS-J, European Research Council (ALZSYN), Alzheimer’s Society, Alzheimer’s Research UK and the Scottish Government, UK Demetia Research Institute, and University of Edinburgh Wellcome Trust ISSF. TS-J is a member of the FENS-Kavli Network of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

CI-G performed the experiments, analyzed the data, and drafted the manuscript; JJR-R, CH-B, RJ, and FH-P performed the experiments and analyzed the data; TSJ analyzed the data, drafted and reviewed the manuscript; MGA conceived the study, analyzed the experiments, and wrote the manuscript approved by all authors.

Corresponding author

Correspondence to Monica Garcia-Alloza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infante-Garcia, C., Ramos-Rodriguez, J.J., Hierro-Bujalance, C. et al. Antidiabetic Polypill Improves Central Pathology and Cognitive Impairment in a Mixed Model of Alzheimer’s Disease and Type 2 Diabetes. Mol Neurobiol 55, 6130–6144 (2018). https://doi.org/10.1007/s12035-017-0825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0825-7

Keywords

Navigation