Skip to main content
Log in

Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fragile X Syndrome (FXS) is the leading cause of autism spectrum disorder and intellectual disability and results from loss of Fragile X mental retardation protein (FMRP). In neurons, FMRP controls the translation of synaptic plasticity proteins that are implicated in learning and memory. FMRP also regulates development- and experience-dependent actin cytoskeleton remodeling within dendritic spines through the small Rho GTPase Rac1. Modulation of Rac1 activity is critical during synaptic plasticity as well as learning and memory. We have previously shown that FXS mouse models exhibit learning and memory deficits as well as hyperactive Rac1 in the hippocampus. To determine whether pharmacological inhibition of Rac1 in FXS improves cognitive impairment, FXS mice were treated with the specific Rac1 inhibitor NSC23766, followed by fear conditioning. Whereas non-cognitive functions were unaffected, hippocampus-related memory improved in FXS mice treated with the Rac1 inhibitor. Furthermore, long-term potentiation in hippocampal slices from FXS mice was increased after incubation with the Rac1 inhibitor. Together, these observations indicate that modulation of Rac1 may provide a novel therapeutic target in the treatment of cognitive impairment in FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    Article  PubMed  CAS  Google Scholar 

  2. Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor dependent translation of PSD-95. Proc Natl Acad Sci U S A 100:14374–14378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112(3):317–327

    Article  PubMed  CAS  Google Scholar 

  4. Niere F, Wilkerson JR, Huber KM (2012) Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J Neurosci 32(17):5924–5936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R (2005) Altered anxiety related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4(7):420–430

    Article  PubMed  CAS  Google Scholar 

  6. Bernardet M, Crusio WE (2009) Fmr1 KO mice as a possible model of autistic features. Sci World J 6:1164–1176

    Article  CAS  Google Scholar 

  7. McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ (2008) Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav Neurosci 122(2):293–300

    Article  PubMed  Google Scholar 

  8. Deacon RM, Glass L, Snape M, Hurley MJ, Altimiras FJ, Biekofsky RR, Cogram P (2015) NNZ-2566, a novel analog of (1-3) IGF-1, as a potential therapeutic agent for fragile X syndrome. NeuroMolecular Med 17:71–82

    Article  PubMed  CAS  Google Scholar 

  9. Oddi D, Subashi E, Middei S, Bellocchio L, Lemaire-Mayo V, Guzman M, Crsio WE, D’Mato FR et al (2015) Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome. Neuropsychopharmachology 40(5):1113–1122

    Article  Google Scholar 

  10. Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y et al (2015) 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 89:43–53

    Article  PubMed  CAS  Google Scholar 

  11. Lauterborn JC, Rex CS, Kramar E, Chen LY, Pandyarajan V, Lynch G et al (2007) Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 27(40):10685–10694

    Article  PubMed  CAS  Google Scholar 

  12. Lee HY, Ge WP, Huang W, He Y, Wang GX, Rowson-Baldwin A, Smith SJ, Jan YN et al (2011) Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 72:630–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D (2014) Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci 39:1130–1137

    Article  PubMed  Google Scholar 

  14. Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C et al (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123(1):378–390

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gross C, Berry-Kravis EM, Bassell GJ (2012) Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology 37:178–195

    Article  PubMed  CAS  Google Scholar 

  16. Jacquemont S, Berry-Kravis E, Hagerman R, von Raison F, Gasparini F, Apostol G, Ufer M, Des Portes V et al (2014) The challenges of clinical trials in fragile X syndrome. Psychopharmacology 231:1237–1250

    Article  PubMed  CAS  Google Scholar 

  17. Castets M, Schaeffer C, Bechara E, Schenck A, Khandjian EW, Luche S, Moine H, Rabilloud T et al (2005) FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 14(6):835–844

    Article  PubMed  CAS  Google Scholar 

  18. Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB (2003) Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130:5543–5552

    Article  PubMed  CAS  Google Scholar 

  19. Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38:887–898

    Article  PubMed  CAS  Google Scholar 

  20. de Rubeis S, Pasciuto E, Li KW, Fernandez E, Di Marino D, Buzzi A, Ostroff LE, Klann E et al (2013) CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79:1169–1182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dong T, He J, Wang S, Wang L, Cheng Y, Zhong Y (2016) Inability to activate Rac1-dependent forgetting contributes to behavior inflexibility in mutants of multiple autism-risk genes. Proc Natl Acad Sci U S A 113(27):7644–7649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Majumder P, Chu JF, Chatterjee B, Swamy KB, Shen CJ (2016) Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 132(5):721–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Diego-Otero Y, Romero-Zerbo Y, el Bekay R, Decara J, Sanchez L, Rodriguez-de Fonseca F, del Arco-Herrera I (2009) α-Tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34(4):1011–1026 2009

    Article  PubMed  CAS  Google Scholar 

  24. Bongmba OYN, Martinez LM, Elhardt ME, Butler K, Tejada-Simon MV (2011) Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology. Brain Res 1399:79–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Oh D, Han S, Seo J, Lee JR, Choi J, Groffen J, Kim K, Cho YS et al (2010) Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins. J Neurosci 30(42):14134–14144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu Y, Du S, Lv L, Lei B, Shi W, Tang Y, Wang L, Zhong Y (2016) Hippocampal activation of Rac1 regulates the forgetting of object recognition memory. Curr Biol 26(17):2351–2357

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y (2010) Forgetting is regulated through Rac activity in Drosophila. Cell 140(4):579–589

    Article  PubMed  CAS  Google Scholar 

  29. Jiang L, Mao R, Zhou Q, Yang Y, Cao J, Ding Y, Yang Y, Zhang X et al (2016) Inhibition of Rac1 activity in the hippocampus impairs the forgetting of contextual fear memory. Mol Neurobiol 53(2):1247–1253

    Article  PubMed  CAS  Google Scholar 

  30. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14):5329–5338

    Article  PubMed  CAS  Google Scholar 

  31. Tashiro A, Minden A, Yuste R (2000) Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10(10):927–938

    Article  PubMed  CAS  Google Scholar 

  32. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94:5401–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167

    Article  PubMed  CAS  Google Scholar 

  34. Grossman AW, Elisseou NM, McKinney BC, Greenough WT (2006) Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res 1084(1):158–164

    Article  PubMed  CAS  Google Scholar 

  35. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64(1):58–74

    Article  PubMed  CAS  Google Scholar 

  36. Ba W, van der Raadt J, Nadif Kasri N (2013) Rho GTPase signaling at the synapse: implications for intellectual disability. Exp Cell Res 319(15):2368–2374

    Article  PubMed  CAS  Google Scholar 

  37. Fatemi SH, Folsom TD, Kneeland RE, Yousefi MK, Liesch SB, Thuras PD (2013) Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and homer 1, in autism: a postmortem study in cerebellar vermis and superior frontal cortex. Mol Autism 4:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC (2013) Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. NeuroMolecular Med 15(2):364–383

    Article  PubMed  CAS  Google Scholar 

  39. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  PubMed  CAS  Google Scholar 

  40. Moon SY, Zang H, Zheng Y (2003) Characterization of a brain-specific Rho GTPase-activatin protein, p200RhoGAP. J Biol Chem 278:4151–4159

    Article  PubMed  CAS  Google Scholar 

  41. Garcia-Mata R, Boulter E, Burridge K (2011) The “invisible hand”: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12(8):493–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Martinez LA, Tejada-Simon MV (2017) Increased training intensity induces proper membrane localization of acin remodeling proteins in the hippocampus preventing cognitive deficits: implications for Fragile X syndrome. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0666-4

  43. Martinez LA, Tejada-Simon MV (2011) Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology 61:305–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hou H, Chávez AE, Wang CC, Yang H, Gu H, Siddoway BA, Hall BJ, Castillo PE et al (2014) The Rac1 inhibitor NSC23766 suppresses CREB signaling by targeting NMDA receptor function. J Neurosci 34(42):14006–14012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wu P, Ding ZB, Meng SQ, Shen HW, Sun SC, Luo YX, Liu JF, Lu L et al (2014) Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. Psychopharmacology 231(15):2909–2919

    Article  PubMed  CAS  Google Scholar 

  46. Gao Q, Yao W, Wang J, Yang T, Liu C, Tao Y, Chen Y, Liu X et al (2015) Post-training activation of Rac1 in the basolateral amygdala is required for the formation of both short-term and long-term auditory fear memory. Front Mol Neurosci 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a rac GTPase-specific small molecular inhibitor. Proc Natl Acad Sci U S A 101(20):7618–7623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press (US), Washington (DC) Available from: http://www.ncbi.nlm.nih.gov/books/NBK54050/

    Google Scholar 

  49. Han CJ, O’Tuathaigh CM, van Trigt L, Quinn JJ, Fanselow MS, Mongeau R, Koch C, Anderson DJ (2003) Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci U S A 100(22):13087–13092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Runyan JD, Moore AN, Dash PK (2004) A role for prefrontal cortex in memory storage for trace fear conditioning. J Neurosci 24(6):1288–1295

    Article  PubMed  CAS  Google Scholar 

  51. Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25(32):7385–7392

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen DM, Derbera WJ, McClellana DA, Crnic LS (2002) Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res 927:8–17

    Article  PubMed  CAS  Google Scholar 

  53. Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425

    Article  PubMed  CAS  Google Scholar 

  54. Baker KB, Wray SP, Ritter R, Mason S, Lanthorn TH, Savelieva KV (2010) Male and female Fmr1 knockout mice on C57 albino background exhibit spatial learning and memory impairments. Genes Brain Behav 9(6):562–574

    PubMed  CAS  Google Scholar 

  55. Veeraragavan S, Graham D, Bui N, Yuva-Paylor LA, Wess J, Paylor R (2012) Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS). Behav Brain Res 228(1):1–8

    Article  PubMed  CAS  Google Scholar 

  56. Spencer CM, Serysheva E, Yuva-Paylor LA, Oostra BA, Nelson DL, Paylor R (2006) Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins. Hum Mol Genet 15(12):1984–1994

    Article  PubMed  CAS  Google Scholar 

  57. Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F (2007) Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 27:13958–13967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tan AM, Samad OA, Fischer TZ, Zhao P, Persson AK, Waxman SG (2012) Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J Neurosci 32:6795–6807

    Article  PubMed  CAS  Google Scholar 

  59. Tan AM, Stamboulian S, Chang YW, Zhao P, Hains AB, Waxman SG, Hains BC (2008) Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J Neurosci 28(49):13173–13183

    Article  PubMed  CAS  Google Scholar 

  60. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    Article  PubMed  CAS  Google Scholar 

  61. McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF (1998) Hippocampectomoy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8:638–646

    Article  PubMed  CAS  Google Scholar 

  62. Bangasser DA, Waxler DE, Santollo J, Shors TJ (2006) Trace conditioning and the hippocampus: the importance of contiguity. J Neurosci 26(34):8702–8706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Baldi E, Lorenzini CA, Bucherelli C (2004) Foot shock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiol Learn Mem 81(3):162–166

    Article  PubMed  Google Scholar 

  64. Beebe K, Wangand Y, Kulesza R (2014) Distribution of fragile X mental retardation protein in the human auditory brainstem. Neurosceince 273:79–91

    Article  CAS  Google Scholar 

  65. Rotschafer SE, Marshak S, Cramer KS (2015) Deletion of Fmr1 alters function and synaptic inputs in the auditory brainstem. PLoS One 10(2):e0117266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang S, Yang S, Park JS, Kirkwood A, Bao S (2014) Failed stabilization for long-term potentiation in the auditory cortex of FMR1 knockout mice. PLoS One 9(8):e104691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Larson J, Lynch G (1988) Role of N-methyl-d-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal θ-rhythm. Brain Res 441:111–118

    Article  PubMed  CAS  Google Scholar 

  68. Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201(4351):160–163

    Article  PubMed  CAS  Google Scholar 

  69. Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368(2):347–350

    Article  PubMed  CAS  Google Scholar 

  70. Oddie SD, Bland BH (1998) Hippocampal formation theta activity and movement selection. Neurosci Biobehav Rev 22(2):221–231

    Article  PubMed  CAS  Google Scholar 

  71. Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2):130–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Quinn JJ, Loya F, Ma QD, Fanselow MS (2005) Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning. Hippocampus 15:665–674

    Article  PubMed  CAS  Google Scholar 

  73. Chen LY, Rex CS, Babayan AH, Krama’r EA, Lynch G, Gall CM, Lauterborn JC (2010) Physiological activation of synaptic Rac_PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci 30(33):10977–10984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mansuo L, Hayashi BS, Rao S, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S et al (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A 104(27):11489–11494

    Article  CAS  Google Scholar 

  75. Dolan BM, Duron SG, Campbell DA, Vollrath B, Rao BSS, Ko HY, Lin GG, Govindarajan A et al (2013) Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. PNAS 110(14):5671–5676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research has been possible with funding from the FRAXA Research Foundation, the Jerome LeJeune Foundation (France), the GEAR-UH grant program, and the SGP-UH grant program (M.V.T.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Victoria Tejada-Simon.

Ethics declarations

Experiments with animals were carried out according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH) and approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Houston.

Competing Interests

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, L.A., Tejada-Simon, M.V. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 55, 5951–5961 (2018). https://doi.org/10.1007/s12035-017-0819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0819-5

Keywords

Navigation