Skip to main content

Advertisement

Log in

Impairment of Thiamine Transport at the GUT-BBB-AXIS Contributes to Wernicke’s Encephalopathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Wernicke’s encephalopathy, a common neurological disease, is caused by thiamine (vitamin B1) deficiency. Neuropathy resulting from thiamine deficiency is a hallmark of Wernicke-Korsakoff syndrome in chronic alcohol users. The underlying mechanisms of this deficiency and progression of neuropathy remain to be understood. To uncover the unknown mechanisms of thiamine deficiency in alcohol abuse, we used chronic alcohol consumption or thiamine deficiency diet ingestion in animal models. Observations from animal models were validated in primary human neuronal culture for neurodegenerative process. We employed radio-labeled bio-distribution of thiamine, qualitative and quantitative analyses of the various biomarkers and neurodegenerative process. In the present studies, we established that disruption of thiamine transport across the intestinal gut blood-brain barrier axis as the cause of thiamine deficiency in the brain for neurodegeneration. We found that reduction in thiamine transport across these interfaces was the cause of reduction in the synthesis of thiamine pyrophosphate (TPP), an active cofactor for pyruvate dehydrogenase E1α (PDHE1α). Our findings revealed that decrease in the levels of PDHE1α cofactors switched on the activation of PD kinase (PDK) in the brain, thereby triggering the neuronal phosphorylation of PDHE1α (p-PDHE1α). Dysfunctional phosphorylated PDHE1α causes the reduction of mitochondrial aerobic respiration that led to neurodegeneration. We concluded that impairment of thiamine transport across the gut-BBB-axis that led to insufficient TPP synthesis was critical to Wernicke-neuropathy, which could be effectively prevented by stabilizing the thiamine transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kopelman MD (2002) Disorders of memory. Brain: J Neurol 125:2152–2190

    Article  Google Scholar 

  2. Thomson AD, Marshall EJ (2006) The natural history and pathophysiology of Wernicke’s encephalopathy and Korsakoff's psychosis. Alcohol Alcohol (Oxford, Oxfordshire) 41:151–158

    Article  CAS  Google Scholar 

  3. Manzo L, Locatelli C, Candura SM, Costa LG (1994) Nutrition and alcohol neurotoxicity. Neurotoxicology 15:555–565

    PubMed  CAS  Google Scholar 

  4. Bakhireva LN, Sharkis J, Shrestha S, Miranda-Sohrabji TJ, Williams S, Miranda RC (2017) Prevalence of prenatal alcohol exposure in the state of Texas as assessed by phosphatidylethanol in newborn dried blood spot specimens. Alcohol Clin Exp Res 41:1004–1011

    Article  PubMed  CAS  Google Scholar 

  5. Bager H, Christensen LP, Husby S, Bjerregaard L (2017) Biomarkers for the detection of prenatal alcohol exposure: a review. Alcohol Clin Exp Res 41:251–261

    Article  PubMed  CAS  Google Scholar 

  6. Fernandes LMP, Bezerra FR, Monteiro MC, Silva ML, de Oliveira FR, Lima RR, Fontes-Junior EA, Maia CSF (2017) Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: how poor nutrition contributes to the alcoholic syndrome, as Marchiafava-Bignami disease. Eur J Clin Nutr 71:580–586

    Article  PubMed  CAS  Google Scholar 

  7. Boloursaz S, Nekooei S, Seilanian Toosi F, Rezaei-Dalouei H, Davachi B, Kazemi S, Abbasi B (2016) Marchiafava-Bignami and alcohol related acute polyneuropathy: the cooccurrence of two rare entities. Case Rep Neurol Med 2016:5848572

    PubMed  PubMed Central  Google Scholar 

  8. Mehrzad R, Ho MG (2016) Mutism caused by severe demyelination in a patient with Marchiafava-Bignami disease. J Emerg Med 51:e129–e132

    Article  PubMed  Google Scholar 

  9. Harper CG, Giles M, Finlay-Jones R (1986) Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry 49:341–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sechi G, Serra A (2007) Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 6:442–455

    Article  PubMed  CAS  Google Scholar 

  11. Sparacia G, Anastasi A, Speciale C, Agnello F, Banco A (2017) Magnetic resonance imaging in the assessment of brain involvement in alcoholic and nonalcoholic Wernicke’s encephalopathy. World J Radiol 9:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nikolakaros G, Ilonen T, Kurki T, Paju J, Papageorgiou SG, Vataja R (2016) Non-alcoholic Korsakoff syndrome in psychiatric patients with a history of undiagnosed Wernicke’s encephalopathy. J Neurol Sci 370:296–302

    Article  PubMed  Google Scholar 

  13. Segobin S, Ritz L, Lannuzel C, Boudehent C, Vabret F, Eustache F, Beaunieux H, Pitel AL (2015) Integrity of white matter microstructure in alcoholics with and without Korsakoff's syndrome. Hum Brain Mapp 36:2795–2808

    Article  PubMed  Google Scholar 

  14. Baker KG, Harding AJ, Halliday GM, Kril JJ, Harper CG (1999) Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke’s encephalopathy. Neuroscience 91:429–438

    Article  PubMed  CAS  Google Scholar 

  15. Kopelman MD (2015) What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia? Neurosci Biobehav Rev 54:46–56

    Article  PubMed  Google Scholar 

  16. Logan C, Asadi H, Kok HK, Looby ST, Brennan P, O'Hare A, Thornton J (2016) Neuroimaging of chronic alcohol misuse. J Med Imaging Radiat Oncol 61(4):435–440

  17. Sutherland GT, Sheedy D, Kril JJ (2014) Neuropathology of alcoholism. Handb Clin Neurol 125:603–615

    Article  PubMed  Google Scholar 

  18. Le Berre AP, Pitel AL, Chanraud S, Beaunieux H, Eustache F, Martinot JL, Reynaud M, Martelli C et al (2015) Sensitive biomarkers of alcoholism’s effect on brain macrostructure: similarities and differences between France and the United States. Front Hum Neurosci 9:354

  19. Harper CG, Blumbergs PC (1982) Brain weights in alcoholics. J Neurol Neurosurg Psychiatry 45:838–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rommer PS, Fuchs D, Leblhuber F, Schroth R, Greilberger M, Tafeit E, Greilberger J (2016) Lowered levels of carbonyl proteins after vitamin B supplementation in patients with mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis 16:284–289

    Article  PubMed  CAS  Google Scholar 

  21. Pan X, Chen Z, Fei G, Pan S, Bao W, Ren S, Guan Y, Zhong C (2016) Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer’s disease. Neurosci Bull 32:591–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang Q, Yang G, Li W, Fan Z, Sun A, Luo J, Ke ZJ (2011) Thiamine deficiency increases beta-secretase activity and accumulation of beta-amyloid peptides. Neurobiol Aging 32:42–53

    Article  PubMed  CAS  Google Scholar 

  23. Nolan KA, Black RS, Sheu KF, Langberg J, Blass JP (1991) A trial of thiamine in Alzheimer’s disease. Arch Neurol 48:81–83

    Article  PubMed  CAS  Google Scholar 

  24. Gold M, Chen MF, Johnson K (1995) Plasma and red blood cell thiamine deficiency in patients with dementia of the Alzheimer’s type. Arch Neurol 52:1081–1086

    Article  PubMed  CAS  Google Scholar 

  25. Gibson GE, Hirsch JA, Cirio RT, Jordan BD, Fonzetti P, Elder J (2013) Abnormal thiamine-dependent processes in Alzheimer’s disease. Lessons from diabetes. Mol Cell Neurosci 55:17–25

    Article  PubMed  CAS  Google Scholar 

  26. Butterworth RF, Besnard AM (1990) Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab Brain Dis 5:179–184

    Article  PubMed  CAS  Google Scholar 

  27. Jimenez-Jimenez FJ, Molina JA, Hernanz A, Fernandez-Vivancos E, de Bustos F, Barcenilla B, Gomez-Escalonilla C, Zurdo M et al (1999) Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease. Neurosci Lett 271:33–36

  28. Costantini A, Pala MI, Grossi E, Mondonico S, Cardelli LE, Jenner C, Proietti S, Colangeli M et al (2015) Long-term treatment with high-dose thiamine in Parkinson disease: an open-label pilot study. J Altern Complement Med (New York, NY) 21:740–747

  29. Costantini A, Pala MI, Compagnoni L, Colangeli M (2013) High-dose thiamine as initial treatment for Parkinson’s disease. BMJ Case Rep 2013. https://doi.org/10.1136/bcr-2013-009289

  30. Haas RH (1988) Thiamin and the brain. Annu Rev Nutr 8:483–515

    Article  PubMed  CAS  Google Scholar 

  31. Dror V, Rehavi M, Biton IE, Eliash S (2014) Rasagiline prevents neurodegeneration in thiamine deficient rats—a longitudinal MRI study. Brain Res 1557:43–54

    Article  PubMed  CAS  Google Scholar 

  32. Ahmed M, Azizi-Namini P, Yan AT, Keith M (2015) Thiamin deficiency and heart failure: the current knowledge and gaps in literature. Heart Fail Rev 20:1–11

    Article  PubMed  CAS  Google Scholar 

  33. DiNicolantonio JJ, Niazi AK, Lavie CJ, O'Keefe JH, Ventura HO (2013) Thiamine supplementation for the treatment of heart failure: a review of the literature. Congest Heart Fail (Greenwich, Conn) 19:214–222

    Article  CAS  Google Scholar 

  34. McCulloch B (2015) High-output heart failure caused by thyrotoxicosis and beriberi. Crit Care Nurs Clin North Am 27:499–510

    Article  PubMed  Google Scholar 

  35. Koike H, Watanabe H, Inukai A, Iijima M, Mori K, Hattori N, Sobue G (2006) Myopathy in thiamine deficiency: analysis of a case. J Neurol Sci 249:175–179

    Article  PubMed  Google Scholar 

  36. Hernandez-Vazquez AJ, Garcia-Sanchez JA, Moreno-Arriola E, Salvador-Adriano A, Ortega-Cuellar D, Velazquez-Arellano A (2016) Thiamine deprivation produces a liver ATP deficit and metabolic and genomic effects in mice: findings are parallel to those of biotin deficiency and have implications for energy disorders. J Nutrigenet Nutrigenomics 9:287–299

    Article  PubMed  CAS  Google Scholar 

  37. Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A (2014) Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy. Exp Neurol 261:109–119

    Article  PubMed  CAS  Google Scholar 

  38. Liu D, Ke Z, Luo J (2017) Thiamine deficiency and Neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol Neurobiol 54(7):5440–5448

    Article  PubMed  CAS  Google Scholar 

  39. Wang X, Xu M, Frank JA, Ke ZJ, Luo J (2017) Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells. Toxicol Appl Pharmacol 320:26–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hazell AS, Faim S, Wertheimer G, Silva VR, Marques CS (2013) The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 62(5):796–802

    Article  PubMed  CAS  Google Scholar 

  41. Abdou E, Hazell AS (2015) Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40:353–361

    Article  PubMed  CAS  Google Scholar 

  42. Reidling JC, Lambrecht N, Kassir M, Said HM (2010) Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter-2-deficient mice. Gastroenterology 138:1802–1809

    Article  PubMed  CAS  Google Scholar 

  43. Hoyumpa AM Jr (1980) Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr 33:2750–2761

    Article  PubMed  CAS  Google Scholar 

  44. Latt N, Dore G (2014) Thiamine in the treatment of Wernicke encephalopathy in patients with alcohol use disorders. Intern Med J 44:911–915

    Article  PubMed  CAS  Google Scholar 

  45. Subramanya SB, Subramanian VS, Said HM (2010) Chronic alcohol consumption and intestinal thiamin absorption: effects on physiological and molecular parameters of the uptake process. Am J Physiol Gastrointest Liver Physiol 299:G23–G31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J (2011) Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 6:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Haorah J, Floreani NA, Knipe B, Persidsky Y (2011) Stabilization of superoxide dismutase by acetyl-l-carnitine in human brain endothelium during alcohol exposure: novel protective approach. Free Radic Biol Med 51:1601–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Haorah J, Rump TJ, Xiong H (2013) Reduction of brain mitochondrial beta-oxidation impairs complex I and V in chronic alcohol intake: the underlying mechanism for neurodegeneration. PLoS One 8:e70833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Butterworth RF, Kril JJ, Harper CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol Clin Exp Res 17:1084–1088

    Article  PubMed  CAS  Google Scholar 

  50. Qin L, Crews FT (2014) Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 38:657–671

    Article  PubMed  CAS  Google Scholar 

  51. Wijnia JW, Oudman E (2013) Biomarkers of delirium as a clue to diagnosis and pathogenesis of Wernicke-Korsakoff syndrome. Eur J Neurol 20:1531–1538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The National Institute of Health (NIH/NIAAA) supported the work.

Funding

This work was supported by NIH/NIAAA grant 1R21AA022734-01A1, R21 AA020370-01A1 (to JH).

Author information

Authors and Affiliations

Authors

Contributions

PMAM carried out the studies, performed the acquisition data and involved in manuscript preparation. HS and SA assisted PMAM in experiments and data acquisition. AMS performed the animal care, and pair-feeding, XM helped JH with the manuscript preparation and figure design. JH designed the whole project, supervised the experiments, data interpretation and prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to James Haorah.

Ethics declarations

Ethical Approval and Consent to Participate

Elective abortus specimens of human fetal brain tissues were obtained in full compliance with the ethical guidelines of the National Institutes of Health and University of Nebraska Medical Center. No disclosure of the source of abortus tissue or of patient information was possible since only de-identified abortus tissues were obtained from the source. In all instances, informed consent was obtained and maintained by the source.

Consent for Publication

Not applicable.

Availability of Data and Materials

All available are presented in this main manuscript.

Competing Interests

The authors declare that they have competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Muneer, P.M., Alikunju, S., Schuetz, H. et al. Impairment of Thiamine Transport at the GUT-BBB-AXIS Contributes to Wernicke’s Encephalopathy. Mol Neurobiol 55, 5937–5950 (2018). https://doi.org/10.1007/s12035-017-0811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0811-0

Keywords

Navigation