Skip to main content

Advertisement

Log in

Tibolone Preserves Mitochondrial Functionality and Cell Morphology in Astrocytic Cells Treated with Palmitic Acid

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G (2007) Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 34(1):34–39. doi:10.1016/j.mcn.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689. doi:10.1038/ncpneuro0355

    Article  CAS  PubMed  Google Scholar 

  3. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  4. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378. doi:10.3389/fncel.2014.00378

    Article  PubMed  PubMed Central  Google Scholar 

  5. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620. doi:10.1016/j.it.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169. doi:10.1111/j.1365-2567.2009.03225.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saetre P, Emilsson L, Axelsson E, Kreuger J, Lindholm E, Jazin E (2007) Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry 7:46. doi:10.1186/1471-244X-7-46

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. doi:10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belot N, Rorive S, Doyen I, Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36(3):375–390

    Article  CAS  PubMed  Google Scholar 

  10. Mao X, Moerman-Herzog AM, Wang W, Barger SW (2006) Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 281(47):35863–35872. doi:10.1074/jbc.M604166200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gasque P, Chan P, Mauger C, Schouft MT, Singhrao S, Dierich MP, Morgan BP, Fontaine M (1996) Identification and characterization of complement C3 receptors on human astrocytes. J Immunol 156(6):2247–2255

    CAS  PubMed  Google Scholar 

  12. Landolfi C, Soldo L, Polenzani L, Apicella C, Capezzone de Joannon A, Coletta I, Di Cesare F, Brufani M et al (1998) Inflammatory molecule release by beta-amyloid-treated T98G astrocytoma cells: role of prostaglandins and modulation by paracetamol. Eur J Pharmacol 360(1):55–64

    Article  CAS  PubMed  Google Scholar 

  13. Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2017) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol. doi:10.1007/s12035-017-0481-y

  14. Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16(1):17–29. doi:10.1038/nrn3856

    Article  CAS  PubMed  Google Scholar 

  15. Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 144:5–26. doi:10.1016/j.pneurobio.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  16. Kloosterboer HJ (2001) Tibolone: a steroid with a tissue-specific mode of action. J Steroid Biochem Mol Biol 76(1–5):231–238

    Article  CAS  PubMed  Google Scholar 

  17. Kloosterboer HJ (2004) Tissue-selectivity: the mechanism of action of tibolone. Maturitas 48(Suppl 1):S30–S40. doi:10.1016/j.maturitas.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  18. de Gooyer ME, Kleyn GT, Smits KC, Ederveen AG, Verheul HA, Kloosterboer HJ (2001) Tibolone: a compound with tissue specific inhibitory effects on sulfatase. Mol Cell Endocrinol 183(1–2):55–62

    Article  PubMed  Google Scholar 

  19. Guzman CB, Zhao C, Deighton-Collins S, Kleerekoper M, Benjamins JA, Skafar DF (2007) Agonist activity of the 3-hydroxy metabolites of tibolone through the oestrogen receptor in the mouse N20.1 oligodendrocyte cell line and normal human astrocytes. J Neuroendocrinol 19(12):958–965. doi:10.1111/j.1365-2826.2007.01611.x

    Article  CAS  PubMed  Google Scholar 

  20. Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM (2014) Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 389(1–2):48–57. doi:10.1016/j.mce.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  21. Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. doi:10.1016/j.mce.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen JC, Killcross AS, Jenkins TA (2014) Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 8:375. doi:10.3389/fnins.2014.00375

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martin-Jimenez CA, Gaitan-Vaca DM, Echeverria V, Gonzalez J, Barreto GE (2016) Relationship between obesity, Alzheimer's disease, and Parkinson's disease: an astrocentric view. Mol Neurobiol. doi:10.1007/s12035-016-0193-8

  24. Jayaraman A, Lent-Schochet D, Pike CJ (2014) Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function. J Neuroinflammation 11:162. doi:10.1186/s12974-014-0162-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, Weller K, Ellacott KL (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 35:33–42. doi:10.1016/j.bbi.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  26. Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin N Am 37(3):635–646, viii-ix. doi:10.1016/j.ecl.2008.06.007

    Article  CAS  Google Scholar 

  27. Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21. doi:10.1016/j.bbi.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J et al (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59(9):2171–2177. doi:10.2337/db09-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez-Barroso MM, Rial E (2009) The role of fatty acids in the activity of the uncoupling proteins. Curr Chem Biol 3(2):180–188. doi:10.2174/187231309788166451

    CAS  Google Scholar 

  30. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120(6):1060–1071. doi:10.1111/j.1471-4159.2012.07660.x

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon B, Lee HK, Querfurth HW (2014) Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta 1843(7):1402–1413. doi:10.1016/j.bbamcr.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Chan C (2014) IPAF inflammasome is involved in interleukin-1beta production from astrocytes, induced by palmitate; implications for Alzheimer's disease. Neurobiol Aging 35(2):309–321. doi:10.1016/j.neurobiolaging.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  33. Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM et al (2014) Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 66(6):1106–1113. doi:10.1016/j.pharep.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  34. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer's disease. J Neurosci Off J Soc Neurosci 31(41):14820–14830. doi:10.1523/JNEUROSCI.3883-11.2011

    Article  CAS  Google Scholar 

  35. Fraser T, Tayler H, Love S (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer's disease. Neurochem Res 35(3):503–513. doi:10.1007/s11064-009-0087-5

    Article  CAS  PubMed  Google Scholar 

  36. Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol 58:5.61.1–5.61.18. doi:10.1002/0471141755.ph0561s58

  37. Yue G, Shi G, Azaro MA, Yang Q, Hu G, Luo M, Yin K, Nagele RG et al (2008) Lipopolysaccharide (LPS) potentiates hydrogen peroxide toxicity in T98G astrocytoma cells by suppression of anti-oxidative and growth factor gene expression. BMC Genomics 9:608. doi:10.1186/1471-2164-9-608

    Article  PubMed  PubMed Central  Google Scholar 

  38. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144 Pt B:294–303. doi:10.1016/j.jsbmb.2014.07.009

    Article  PubMed  Google Scholar 

  39. Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE (2015) PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 27(4):355–367. doi:10.1007/s12640-014-9509-5

    Article  CAS  PubMed  Google Scholar 

  40. Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE (2016) Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 8:152. doi:10.3389/fnagi.2016.00152

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kong JY, Rabkin SW (2002) Palmitate-induced cardiac apoptosis is mediated through CPT-1 but not influenced by glucose and insulin. Am J Phys Heart Circ Phys 282(2):H717–H725. doi:10.1152/ajpheart.00257.2001

    CAS  Google Scholar 

  42. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50(2):98–115. doi:10.2144/000113610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A J Int Soc Anal Cytol 79(6):405–425. doi:10.1002/cyto.a.21061

    Article  Google Scholar 

  44. Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296. doi:10.1016/j.expneurol.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pirici D, Mogoanta L, Margaritescu O, Pirici I, Tudorica V, Coconu M (2009) Fractal analysis of astrocytes in stroke and dementia. Romanian J Morphol Embryol Rev Roum Morphol Embryol 50(3):381–390

    CAS  Google Scholar 

  46. Karperien AL, Jelinek HF (2015) Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Front Bioeng Biotechnol 3(51). doi:10.3389/fbioe.2015.00051

  47. Fernandez E, Jelinek HF (2001) Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24(4):309–321. doi:10.1006/meth.2001.1201

    Article  CAS  PubMed  Google Scholar 

  48. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837(4):408–417. doi:10.1016/j.bbabio.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241. doi:10.1016/j.freeradbiomed.2008.04.029

    Article  PubMed  Google Scholar 

  50. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurother J Am Soc Exp Neurother 7(4):494–506. doi:10.1016/j.nurt.2010.07.003

    Article  CAS  Google Scholar 

  51. Sekar S, McDonald J, Cuyugan L, Aldrich J, Kurdoglu A, Adkins J, Serrano G, Beach TG et al (2015) Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 36(2):583–591. doi:10.1016/j.neurobiolaging.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  52. Catts VS, Wong J, Fillman SG, Fung SJ, Shannon Weickert C (2014) Increased expression of astrocyte markers in schizophrenia: association with neuroinflammation. Aust N Z J Psychiatry 48(8):722–734. doi:10.1177/0004867414531078

    Article  PubMed  Google Scholar 

  53. Santiago JA, Littlefield AM, Potashkin JA (2016) Integrative transcriptomic meta-analysis of Parkinson's disease and depression identifies NAMPT as a potential blood biomarker for de novo Parkinson's disease. Sci Rep 6:34579. doi:10.1038/srep34579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibbs RB, Edwards D, Lazar N, Nelson D, Talameh J (2006) Effects of long-term hormone treatment and of tibolone on monoamines and monoamine metabolites in the brains of ovariectomised, cynomologous monkeys. J Neuroendocrinol 18(9):643–654. doi:10.1111/j.1365-2826.2006.01463.x

    Article  CAS  PubMed  Google Scholar 

  55. Qiu J, Bosch MA, Ronnekleiv OK, Kloosterboer HJ, Kelly MJ (2008) Tibolone rapidly attenuates the GABAB response in hypothalamic neurones. J Neuroendocrinol 20(12):1310–1318. doi:10.1111/j.1365-2826.2008.01789.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Aguiar RB, Dickel OE, Cunha RW, Monserrat JM, Barros DM, Martinez PE (2008) Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats. Biogerontology 9(5):285–298. doi:10.1007/s10522-008-9137-7

    Article  CAS  PubMed  Google Scholar 

  57. Belenichev IF, Odnokoz OV, Pavlov SV, Belenicheva OI, Polyakova EN (2012) The neuroprotective activity of tamoxifen and tibolone during glutathione depletion in vitro. Neurochem J 6(3):202–212. doi:10.1134/s181971241203004x

    Article  CAS  Google Scholar 

  58. Pinto-Almazan R, Rivas-Arancibia S, Farfan-Garcia ED, Rodriguez-Martinez E, Guerra-Araiza C (2014) Neuroprotective effects of tibolone against oxidative stress induced by ozone exposure. Rev Neurol 58(10):441–448

    PubMed  Google Scholar 

  59. Farfan-Garcia ED, Castillo-Hernandez MC, Pinto-Almazan R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C (2014) Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res 39(9):1776–1786. doi:10.1007/s11064-014-1385-0

    Article  CAS  PubMed  Google Scholar 

  60. Beltran-Campos V, Diaz-Ruiz A, Padilla-Gomez E, Aguilar Zavala H, Rios C, Diaz Cintra S (2015) Effect of tibolone on dendritic spine density in the rat hippocampus. Neurologia 30(7):401–406. doi:10.1016/j.nrl.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  61. de Medeiros AR, Lamas AZ, Caliman IF, Dalpiaz PL, Firmes LB, de Abreu GR, Moyses MR, Lemos EM et al (2012) Tibolone has anti-inflammatory effects in estrogen-deficient female rats on the natriuretic peptide system and TNF-alpha. Regul Pept 179(1–3):55–60. doi:10.1016/j.regpep.2012.08.015

    Article  PubMed  Google Scholar 

  62. Wang Z, Liu D, Wang J, Liu S, Gao M, Ling EA, Hao A (2012) Cytoprotective effects of melatonin on astroglial cells subjected to palmitic acid treatment in vitro. J Pineal Res 52(2):253–264. doi:10.1111/j.1600-079X.2011.00952.x

    Article  CAS  PubMed  Google Scholar 

  63. Patil S, Melrose J, Chan C (2007) Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons. Eur J Neurosci 26(8):2131–2141. doi:10.1111/j.1460-9568.2007.05797.x

    Article  PubMed  PubMed Central  Google Scholar 

  64. Joseph JW, Koshkin V, Saleh MC, Sivitz WI, Zhang CY, Lowell BB, Chan CB, Wheeler MB (2004) Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279(49):51049–51056. doi:10.1074/jbc.M409189200

    Article  CAS  PubMed  Google Scholar 

  65. Fauconnier J, Andersson DC, Zhang SJ, Lanner JT, Wibom R, Katz A, Bruton JD, Westerblad H (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56(4):1136–1142. doi:10.2337/db06-0739

    Article  CAS  PubMed  Google Scholar 

  66. Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB (2002) Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Phys Heart Circ Phys 282(2):H656–H664. doi:10.1152/ajpheart.00726.2001

    CAS  Google Scholar 

  67. Blazquez C, Geelen MJ, Velasco G, Guzman M (2001) The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett 489(2–3):149–153

    Article  CAS  PubMed  Google Scholar 

  68. Sun Y, Ren M, Gao GQ, Gong B, Xin W, Guo H, Zhang XJ, Gao L et al (2008) Chronic palmitate exposure inhibits AMPKalpha and decreases glucose-stimulated insulin secretion from beta-cells: modulation by fenofibrate. Acta Pharmacol Sin 29(4):443–450. doi:10.1111/j.1745-7254.2008.00717.x

    Article  CAS  PubMed  Google Scholar 

  69. Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ (2014) Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 15(6):10334–10349. doi:10.3390/ijms150610334

    Article  PubMed  PubMed Central  Google Scholar 

  70. Foster DW (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest 122(6):1958–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richter C (1999) Ceramide induces cytochrome c release from isolated mitochondria: importance of mitochondrial redox state. J Biol Chem 274(10):6080–6084

    Article  CAS  PubMed  Google Scholar 

  72. Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14(3):597–606. doi:10.1038/sj.cdd.4402020

    Article  CAS  PubMed  Google Scholar 

  73. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatr 18(6):567–588. doi:10.1177/1073858411423441

    Google Scholar 

  75. Lee CY, Dallerac G, Ezan P, Anderova M, Rouach N (2016) Glucose tightly controls morphological and functional properties of astrocytes. Front Aging Neurosci 8:82. doi:10.3389/fnagi.2016.00082

    PubMed  PubMed Central  Google Scholar 

  76. Kongsui R, Beynon SB, Johnson SJ, Walker FR (2014) Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflammation 11:182. doi:10.1186/s12974-014-0182-7

    Article  PubMed  PubMed Central  Google Scholar 

  77. Swagell CD, Henly DC, Morris CP (2005) Expression analysis of a human hepatic cell line in response to palmitate. Biochem Biophys Res Commun 328(2):432–441. doi:10.1016/j.bbrc.2004.12.188

    Article  CAS  PubMed  Google Scholar 

  78. Torres-Aleman I, Rejas MT, Pons S, Garcia-Segura LM (1992) Estradiol promotes cell shape changes and glial fibrillary acidic protein redistribution in hypothalamic astrocytes in vitro: a neuronal-mediated effect. Glia 6(3):180–187. doi:10.1002/glia.440060305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

YG-G is supported by a PhD fellowship from Centro de Estudios Interdisciplinarios Básicos y Aplicados CEIBA (Rodolfo Llinás Program). We acknowledge support from Ministerio de Economía y Competitividad (MINECO), Spain (grant no. BFU2014-51836-C2-1-R), CIBERFES, and Fondos FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Barreto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Giraldo, Y., Garcia-Segura, L.M., Echeverria, V. et al. Tibolone Preserves Mitochondrial Functionality and Cell Morphology in Astrocytic Cells Treated with Palmitic Acid. Mol Neurobiol 55, 4453–4462 (2018). https://doi.org/10.1007/s12035-017-0667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0667-3

Keywords

Navigation