Skip to main content

Advertisement

Log in

Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial injury significantly contributes to the neuronal death under cerebral ischemia and reperfusion. Within several signaling pathways, cyclic adenosine monophosphate (cAMP) signaling plays a substantial role in mitochondrial injury and cell death. Traditionally, the source of cellular cAMP has been attributed to the membrane-bound adenylyl cyclase, whereas the role of the intracellular localized type 10 soluble adenylyl cyclase (sAC) in neuronal pathology has not been considered. Since neurons express an active form of sAC, we aimed to investigate the role of sAC in reperfusion-induced neuronal apoptosis. For this purpose, the in vitro model of oxygen/glucose deprivation (simulated ischemia, 1 h), followed by recovery (simulated reperfusion, 12 h) in rat embryonic neurons, was applied. Although ischemia alone had no significant effect on apoptosis, reperfusion led to an activation of the mitochondrial pathway of apoptosis, hallmarked by mitochondrial depolarization, cytochrome c release, and mitochondrial ROS formation. These effects were accompanied by significantly augmented sAC expression and increased cellular cAMP content during reperfusion. Pharmacological suppression of sAC during reperfusion reduced cellular cAMP and ameliorated reperfusion-induced mitochondrial apoptosis and ROS formation. Similarly, sAC knockdown prevented neuronal death. Further analysis revealed a role of protein kinase A (PKA), a major downstream target of sAC, in reperfusion-induced neuronal apoptosis and ROS formation. In conclusion, the results show a causal role of intracellular, sAC-dependent cAMP signaling in reperfusion-induced mitochondrial injury and apoptosis in neurons. The protective effect of sAC inhibition during the reperfusion phase provides a basis for the development of new strategies to prevent the reperfusion-induced neuronal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 380(9859):2095–2128. doi:10.1016/s0140-6736(12)61728-0

    Article  Google Scholar 

  2. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 380(9859):2197–2223. doi:10.1016/s0140-6736(12)61689-4

    Article  Google Scholar 

  3. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. Journal of the neurological sciences 179(S 1-2):1–33

    Article  CAS  PubMed  Google Scholar 

  4. Li D, Shao Z, Vanden Hoek TL, Brorson JR (2007) Reperfusion accelerates acute neuronal death induced by simulated ischemia. Experimental neurology 206(2):280–287. doi:10.1016/j.expneurol.2007.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochemical Society transactions 34(Pt 2):232–237. doi:10.1042/bst20060232

    Article  CAS  PubMed  Google Scholar 

  6. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology 298:229–317. doi:10.1016/b978-0-12-394309-5.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atkins CM, Oliva AA Jr, Alonso OF, Pearse DD, Bramlett HM, Dietrich WD (2007) Modulation of the cAMP signaling pathway after traumatic brain injury. Experimental neurology 208(1):145–158. doi:10.1016/j.expneurol.2007.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu S, Cao Q, Xu P, Ji W, Wang G, Zhang Y (2016) Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats. Experimental and therapeutic medicine 11(3):1005–1010. doi:10.3892/etm.2015.2958

    Article  CAS  PubMed  Google Scholar 

  9. Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K (2008) Amyloid beta-peptide 31-35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation. Aging cell 7(1):47–57. doi:10.1111/j.1474-9726.2007.00352.x

    Article  CAS  PubMed  Google Scholar 

  10. Kraft P, Schwarz T, Gob E, Heydenreich N, Brede M, Meuth SG, Kleinschnitz C (2013) The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp Neurol 247:80–90. doi:10.1016/j.expneurol.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  11. Nagakura A, Takagi N, Takeo S (2002) Selective reduction in type I adenylyl cyclase after microsphere embolism in rat brain. Neuroscience letters 317(2):69–72

    Article  CAS  PubMed  Google Scholar 

  12. Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, Xu H, Shum FW, Jia YH et al (2006) Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 26(3):851–861. doi:10.1523/jneurosci.3292-05.2006

    Article  CAS  Google Scholar 

  13. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science (New York, NY) 289(5479):625–628

    Article  CAS  Google Scholar 

  14. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS, Fischman DA, Levin LR, Buck J (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17(1):82–84. doi:10.1096/fj.02-0598fje

    Article  CAS  Google Scholar 

  15. Wu KY, Zippin JH, Huron DR, Kamenetsky M, Hengst U, Buck J, Levin LR, Jaffrey SR (2006) Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nature neuroscience 9(10):1257–1264. doi:10.1038/nn1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104. doi:10.1016/j.neuron.2012.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E, Busquets-Garcia A, Pagano Zottola AC et al (2016) A cannabinoid link between mitochondria and memory. Nature 539(7630):555–559. doi:10.1038/nature20127

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y (2009) Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. The Journal of biological chemistry 284(22):14760–14768. doi:10.1074/jbc.M900925200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Appukuttan A, Kasseckert SA, Micoogullari M, Flacke JP, Kumar S, Woste A, Abdallah Y, Pott L et al (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovascular research 93(2):340–349. doi:10.1093/cvr/cvr306

    Article  CAS  PubMed  Google Scholar 

  20. Pacifici M, Peruzzi F (2012) Isolation and culture of rat embryonic neural cells: a quick protocol. Journal of visualized experiments : JoVE 63:e3965. doi:10.3791/3965

    Google Scholar 

  21. Mohan V, Sinha RA, Pathak A, Rastogi L, Kumar P, Pal A, Godbole MM (2012) Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Experimental neurology 237(2):477–488. doi:10.1016/j.expneurol.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  22. Wappler EA, Institoris A, Dutta S, Katakam PV, Busija DW (2013) Mitochondrial dynamics associated with oxygen-glucose deprivation in rat primary neuronal cultures. PloS one 8(5):e63206. doi:10.1371/journal.pone.0063206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khare D, Godbole NM, Pawar SD, Mohan V, Pandey G, Gupta S, Kumar D, Dhole TN et al (2013) Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. European journal of nutrition 52(4):1405–1415. doi:10.1007/s00394-012-0449-7

    Article  CAS  PubMed  Google Scholar 

  24. Shrivastava A, Tiwari M, Sinha RA, Kumar A, Balapure AK, Bajpai VK, Sharma R, Mitra K et al (2006) Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. The Journal of biological chemistry 281(28):19762–19771. doi:10.1074/jbc.M600746200

    Article  CAS  PubMed  Google Scholar 

  25. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH et al (2005) The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental cell 9(2):249–259. doi:10.1016/j.devcel.2005.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu H, Zhu H, Xiao S, Sun H, Xie C, Ma Y (2012) Activation and crosstalk between the endoplasmic reticulum road and JNK pathway in ischemia-reperfusion brain injury. Acta neurochirurgica 154(7):1197–1203. doi:10.1007/s00701-012-1396-z

    Article  PubMed  Google Scholar 

  27. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH (2005) Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 25(1):41–53. doi:10.1038/sj.jcbfm.9600005

    Article  CAS  Google Scholar 

  28. Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, Vanden Hoek TL, Schumacker PT (2011) Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochimica et biophysica acta 1813(7):1382–1394. doi:10.1016/j.bbamcr.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  29. Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis : an international journal on programmed cell death 12(5):887–896. doi:10.1007/s10495-007-0749-1

    Article  CAS  Google Scholar 

  30. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox biology 2:702–714. doi:10.1016/j.redox.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. The Journal of neuroscience : the official journal of the Society for Neuroscience 27(5):1129–1138. doi:10.1523/jneurosci.4468-06.2007

    Article  CAS  Google Scholar 

  32. Leadsham JE, Gourlay CW (2010) cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC cell biology 11:92. doi:10.1186/1471-2121-11-92

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rahimi A, Lee YY, Abdella H, Doerflinger M, Gangoda L, Srivastava R, Xiao K, Ekert PG et al (2013) Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis : an international journal on programmed cell death 18(12):1492–1499. doi:10.1007/s10495-013-0895-6

    Article  CAS  Google Scholar 

  34. Wang H, Gong B, Vadakkan KI, Toyoda H, Kaang BK, Zhuo M (2007) Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors. J Biol Chem 282(2):1507–1517. doi:10.1074/jbc.M607291200

    Article  CAS  PubMed  Google Scholar 

  35. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T (2013) Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell metabolism 17(6):965–975. doi:10.1016/j.cmet.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  36. Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G et al (2016) Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nature chemical biology 12(10):838–844. doi:10.1038/nchembio.2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S et al (2000) Apoptosis is initiated by myocardial ischemia and executed during reperfusion. Journal of molecular and cellular cardiology 32(2):197–208. doi:10.1006/jmcc.1999.1066

    Article  CAS  PubMed  Google Scholar 

  38. Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(14):5932–5941

    CAS  Google Scholar 

  39. Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 18(2):238–251. doi:10.1096/fj.03-0295com

    Article  CAS  Google Scholar 

  40. Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC et al (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicology letters 224(1):130–140. doi:10.1016/j.toxlet.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  41. Okuno S, Saito A, Hayashi T, Chan PH (2004) The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. The Journal of neuroscience : the official journal of the Society for Neuroscience 24(36):7879–7887. doi:10.1523/jneurosci.1745-04.2004

    Article  CAS  Google Scholar 

  42. Liu B, Huang W, Xiao X, Xu Y, Ma S, Xia Z (2015) Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Oxidative Medicine and Cellular Longevity 2015:624819. doi:10.1155/2015/624819

    PubMed  PubMed Central  Google Scholar 

  43. Tsai MS, Chiu YT, Wang SH, Hsieh-Li HM, Lian WC, Li H (2006) Abolishing Bax-dependent apoptosis shows beneficial effects on spinal muscular atrophy model mice. Molecular therapy : the journal of the American Society of Gene Therapy 13(6):1149–1155. doi:10.1016/j.ymthe.2006.02.008

    Article  CAS  Google Scholar 

  44. Scott JD, Stofko RE, McDonald JR, Comer JD, Vitalis EA, Mangili JA (1990) Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase. The Journal of biological chemistry 265(35):21561–21566

    CAS  PubMed  Google Scholar 

  45. Rubin CS (1994) A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochimica et biophysica acta 1224(3):467–479

    PubMed  Google Scholar 

  46. Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS letters 444(2-3):245–249

    Article  CAS  PubMed  Google Scholar 

  47. Affaitati A, Cardone L, de Cristofaro T, Carlucci A, Ginsberg MD, Varrone S, Gottesman ME, Avvedimento EV et al (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. The Journal of biological chemistry 278(6):4286–4294. doi:10.1074/jbc.M209941200

    Article  CAS  PubMed  Google Scholar 

  48. Cieslak D, Lazou A (2007) Regulation of BAD protein by PKA, PKCdelta and phosphatases in adult rat cardiac myocytes subjected to oxidative stress. Molecules and cells 24(2):224–231

    CAS  PubMed  Google Scholar 

  49. Zhang L, Zambon AC, Vranizan K, Pothula K, Conklin BR, Insel PA (2008) Gene expression signatures of cAMP/protein kinase A (PKA)-promoted, mitochondrial-dependent apoptosis. Comparative analysis of wild-type and cAMP-deathless S49 lymphoma cells. The Journal of biological chemistry 283(7):4304–4313. doi:10.1074/jbc.M708673200

    Article  CAS  PubMed  Google Scholar 

  50. Neuzil J, Widen C, Gellert N, Swettenham E, Zobalova R, Dong LF, Wang XF, Lidebjer C et al (2007) Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Redox report : communications in free radical research 12(3):148–162. doi:10.1179/135100007x200227

    Article  CAS  PubMed  Google Scholar 

  51. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews 94(3):909–950. doi:10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nature reviews Neuroscience 10(7):481–494. doi:10.1038/nrn2665

    Article  CAS  PubMed  Google Scholar 

  53. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH et al (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12(7):857–863. doi:10.1038/nn.2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by cooperation Grant LA 1159/7-1 of the Deutsche Forschungsgemeinschaft (Germany) and Department of Science and Technology (India). This work was also supported by FAST-CoE grant from Ministry of HRD, Department of Education, Government of India, and was a part of the thesis of Megha Chagtoo supported by ICMR-SRF fellowship from Government of India and submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at Integral University, Lucknow, India (IU/R&D/2017-MCN00060). We thank Lisa L. Schaffer (University of Tennessee) for the comprehensive editing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Ladilov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

.

ESM 1

(DOCX 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagtoo, M., George, N., Pathak, N. et al. Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis. Mol Neurobiol 55, 2471–2482 (2018). https://doi.org/10.1007/s12035-017-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0473-y

Keywords

Navigation