Skip to main content
Log in

Dad’s Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light–dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep–wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants’ physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carskadon MD (2005) Principles and practice of sleep medicine. Elsevier, Philadelphia

    Google Scholar 

  2. Harrington J, Lee-Chiong T (2012) Basic biology of sleep. Dent Clin N Am 56(2):319–330. doi:10.1016/j.cden.2012.01.005

    Article  PubMed  Google Scholar 

  3. Axelrod S, Saez L, Young MW (2015) Studying circadian rhythm and sleep using genetic screens in Drosophila. Methods Enzymol 551:3–27. doi:10.1016/bs.mie.2014.10.026

    Article  CAS  PubMed  Google Scholar 

  4. Adams GC, Stoops MA, Skomro RP (2014) Sleep tight: exploring the relationship between sleep and attachment style across the life span. Sleep Med Rev 18(6):495–507. doi:10.1016/j.smrv.2014.03.002

    Article  PubMed  Google Scholar 

  5. Khoury J, Doghramji K (2015) Primary sleep disorders. Psychiatr Clin North Am 38(4):683–704. doi:10.1016/j.psc.2015.08.002

    Article  PubMed  Google Scholar 

  6. Ramar K, Olson EJ (2013) Management of common sleep disorders. Am Fam Physician 88(4):231–238

    PubMed  Google Scholar 

  7. Kay-Stacey M, Attarian H (2016) Advances in the management of chronic insomnia. BMJ 354:i2123. doi:10.1136/bmj.i2123

    Article  PubMed  Google Scholar 

  8. Murray BJ (2016) A practical approach to excessive daytime sleepiness: a focused review. Can Respir J 2016:4215938. doi:10.1155/2016/4215938

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hala D, Huggett DB, Burggren WW (2014) Environmental stressors and the epigenome. Drug Discov Today Technol 12:e3–e8. doi:10.1016/j.ddtec.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  10. Ladd-Acosta C (2015) Epigenetic signatures as biomarkers of exposure. Curr Environ Health Rep 2(2):117–125. doi:10.1007/s40572-015-0051-2

    Article  CAS  PubMed  Google Scholar 

  11. Hughes V (2014) Epigenetics: the sins of the father. Nature 507(7490):22–24. doi:10.1038/507022ª

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson EK, Bostrom AE, Mwinyi J, Schioth HB (2016) Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS 20(6):334–342. doi:10.1089/omi.2016.0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong CC, Parsons MJ, Lester KJ, Burrage J, Eley TC, Mill J et al (2015) Epigenome-wide DNA methylation analysis of monozygotic twins discordant for diurnal preference. Twin Res Hum Genet 18(6):662–669. doi:10.1017/thg.2015.78

    Article  PubMed  Google Scholar 

  14. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118(3062):273–274

    Article  CAS  PubMed  Google Scholar 

  15. Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA et al (2007) The visual scoring of sleep in adults. J Clin Sleep Med 3(2):121–131

    PubMed  Google Scholar 

  16. Moser D, Anderer P, Gruber G, Parapatics S, Loretz E, Boeck M, Kloesch G, Heller E et al (2009) Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep 32(2):139–149

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grigg-Damberger MM (2012) The AASM scoring manual four years later. J Clin Sleep Med 8(3):323–332. doi:10.5664/jcsm.1928

    PubMed  PubMed Central  Google Scholar 

  18. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythm 14(6):557–568

    CAS  Google Scholar 

  19. Lim AS, Chang AM, Shulman JM, Raj T, Chibnik LB, Cain SW, Rothamel K, Benoist C et al (2012) A common polymorphism near PER1 and the timing of human behavioral rhythms. Ann Neurol 72(3):324–334. doi:10.1002/ana.23636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fuhr L, Abreu M, Pett P, Relogio A (2015) Circadian systems biology: when time matters. Comput Struct Biotechnol J 13:417–426. doi:10.1016/j.csbj.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beale, A. D., Whitmore, D., & Moran, D. (2016). Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments. J Comp Physiol B. doi:10.1007/s00360-016-1000-6.

  22. Preussner M, Heyd F (2016) Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch 468(6):983–991. doi:10.1007/s00424-016-1820-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwierin B, Borbely AA, Tobler I (1999) Prolonged effects of 24-h total sleep deprivation on sleep and sleep EEG in the rat. Neurosci Lett 261(1–2):61–64

    Article  CAS  PubMed  Google Scholar 

  24. Ocampo-Garcés A, Molina E, Rodríguez A, Vivaldi EA (2000) Homeostasis of REM sleep after total and selective sleep deprivation in the rat. J Neurophysiol 84(5):2699–2702

    Article  PubMed  Google Scholar 

  25. Arias-Carrión O, Huitrón-Reséndiz S, Arankowsky-Sandoval G, Murillo-Rodríguez E (2011) Biochemical modulation of the sleep-wake cycle: endogenous sleep-inducing factors. J Neurosci Res 89(8):1143–1149. doi:10.1002/jnr.22666

    Article  PubMed  CAS  Google Scholar 

  26. Jones BE (2011) Neurobiology of waking and sleeping. Handb Clin Neurol 98:131–149. doi:10.1016/B978-0-444-52006-7.00009-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saper CB (2013) The neurobiology of sleep. Continuum (Minneap Minn) 19(1 Sleep Disorders):19–31. doi:10.1212/01.CON.0000427215.07715.73

    Google Scholar 

  28. Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15(2):123–135. doi:10.1016/j.smrv.2010.06.005

    Article  PubMed  Google Scholar 

  29. Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Arias-Carrión O, Drucker-Colín R (2011) Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats. PLoS One 6(7):e20766. doi:10.1371/journal.pone.0020766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cirelli C, Tononi G (2000) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20(24):9187–9194

    CAS  PubMed  Google Scholar 

  31. Cirelli C, Tononi G (2011) Molecular neurobiology of sleep. Handb Clin Neurol 98:191–203. doi:10.1016/B978-0-444-52006-7.00012-5

    Article  PubMed  Google Scholar 

  32. American Academy of Sleep Medicine. (2001). International classification of sleep disorders: diagnostic and coding manual

  33. Malhotra S, Kushida CA (2013) Primary hypersomnias of central origin. Continuum (Minneap Minn) 19(1 Sleep Disorders):67–85. doi:10.1212/01.CON.0000427212.05930.c4

    Google Scholar 

  34. Ohayon MM (2008) Nocturnal awakenings and comorbid disorders in the American general population. J Psychiatr Res 43(1):48–54. doi:10.1016/j.jpsychires.2008.02.001

    Article  PubMed  Google Scholar 

  35. Pigeon WR (2010) Diagnosis, prevalence, pathways, consequences & treatment of insomnia. Indian J Med Res 131:321–332

    PubMed  PubMed Central  Google Scholar 

  36. Blumel JE, Cano A, Mezones-Holguin E, Baron G, Bencosme A, Benitez Z, Bravo LM, Calle A et al (2012) A multinational study of sleep disorders during female mid-life. Maturitas 72(4):359–366. doi:10.1016/j.maturitas.2012.05.011

    Article  PubMed  Google Scholar 

  37. Merrigan JM, Buysse DJ, Bird JC, Livingston EH (2013) JAMA patient page. Insomnia. JAMA 309(7):733. doi:10.1001/jama.2013.524

    Article  CAS  PubMed  Google Scholar 

  38. Goldman-Mellor S, Gregory AM, Caspi A, Harrington H, Parsons M, Poulton R, Moffitt TE (2014) Mental health antecedents of early midlife insomnia: evidence from a four-decade longitudinal study. Sleep 37(11):1767–1775. doi:10.5665/sleep.4168

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taylor DJ, Bramoweth AD, Grieser EA, Tatum JI, Roane BM (2013) Epidemiology of insomnia in college students: relationship with mental health, quality of life, and substance use difficulties. Behav Ther 44(3):339–348. doi:10.1016/j.beth.2012.12.001

    Article  PubMed  Google Scholar 

  40. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K (2015) The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 14(5):547–558. doi:10.1016/S1474-4422(15)00021-6

    Article  PubMed  Google Scholar 

  41. Van Someren EJ, Cirelli C, Dijk DJ, Van Cauter E, Schwartz S, Chee MW (2015) Disrupted sleep: from molecules to cognition. J Neurosci 35(41):13889–13895. doi:10.1523/JNEUROSCI.2592-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calhoun SL, Vgontzas AN, Fernandez-Mendoza J, Mayes SD, Tsaoussoglou M, Basta M, Bixler EO (2011) Prevalence and risk factors of excessive daytime sleepiness in a community sample of young children: the role of obesity, asthma, anxiety/depression, and sleep. Sleep 34(4):503–507

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dauvilliers Y, Lopez R, Ohayon M, Bayard S (2013) Hypersomnia and depressive symptoms: methodological and clinical aspects. BMC Med 11:78. doi:10.1186/1741-7015-11-78

    Article  PubMed  PubMed Central  Google Scholar 

  44. Daniels SR (2009) Sleep and obesity. J Pediatr 154(6):A3. doi:10.1016/j.jpeds.2009.04.026

    Google Scholar 

  45. de Souza Vilela T, Bittencourt LR, Tufik S, Moreira GA (2016) Factors influencing excessive daytime sleepiness in adolescents. J Pediatr 92(2):149–155. doi:10.1016/j.jped.2015.05.006

    Article  Google Scholar 

  46. Godfrey KM, Costello PM, Lillycrop KA (2015) The developmental environment, epigenetic biomarkers and long-term health. J Dev Orig Health Dis 6(5):399–406. doi:10.1017/S204017441500121X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haggarty P (2015) Genetic and metabolic determinants of human epigenetic variation. Curr Opin Clin Nutr Metab Care 18(4):334–338. doi:10.1097/MCO.0000000000000194

    Article  CAS  PubMed  Google Scholar 

  48. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286(5439):481–486

    Article  CAS  PubMed  Google Scholar 

  49. Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19(3):563–573. doi:10.1210/me.2004-0496

    Article  CAS  PubMed  Google Scholar 

  50. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi:10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  51. Rottach A, Leonhardt H, Spada F (2009) DNA methylation-mediated epigenetic control. J Cell Biochem 108(1):43–51. doi:10.1002/jcb.22253

    Article  CAS  PubMed  Google Scholar 

  52. Bestor TH, Edwards JR, Boulard M (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112(22):6796–6799. doi:10.1073/pnas.1415301111

    Article  CAS  PubMed  Google Scholar 

  53. Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326. doi:10.1038/nature14192

    Article  CAS  PubMed  Google Scholar 

  54. Long HK, King HW, Patient RK, Odom DT, Klose RJ (2016) Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Res 44(14):6693–6706. doi:10.1093/nar/gkw258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23(8):413–418. doi:10.1016/j.tig.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  56. Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K (2006) Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain. Exp Neurol 198(1):154–166. doi:10.1016/j.expneurol.2005.11.024

    Article  CAS  PubMed  Google Scholar 

  57. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. doi:10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  58. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K et al (2016) DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature 532(7599):329–333. doi:10.1038/nature17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tajima S, Kimura H, Suetake I (2016) Establishment and maintenance of DNA methylation. In: Hanaoka F, Sugasawa K (eds) DNA replication, recombination, and repair: molecular mechanisms and pathology. Springer Japan, Tokyo, pp. 489–516

    Chapter  Google Scholar 

  60. Allis CD, Caparros M, Jenuwein T, Reinberg D, Lachner M (2015) Epigenetics, Second edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  61. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88. doi:10.1016/j.cell.2007.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sempere JM, Martinez-Peinado P, Arribas MI, Reig JA, De La Sen ML, Zubcoff JJ et al (2014) Single cell-derived clones from human adipose stem cells present different immunomodulatory properties. Clin Exp Immunol 176(2):255–265. doi:10.1111/cei.12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iyengar S, Zhan C, Lu J, Korngold R, Schwartz DH (2014) Treatment with a rho kinase inhibitor improves survival from graft-versus-host disease in mice after MHC-haploidentical hematopoietic cell transplantation. Biol Blood Marrow Transplant 20(8):1104–1111. doi:10.1016/j.bbmt.2014.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hannon E, Lunnon K, Schalkwyk L, Mill J (2015) Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10(11):1024–1032. doi:10.1080/15592294.2015.1100786

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gupta S, Verma S, Mantri S, Berman NE, Sandhir R (2015) Targeting microRNAs in prevention and treatment of neurodegenerative disorders. Drug Dev Res 76(7):397–418. doi:10.1002/ddr.21277

    Article  CAS  PubMed  Google Scholar 

  66. Coppede F, Migliore L (2015) DNA damage in neurodegenerative diseases. Mutat Res 776:84–97. doi:10.1016/j.mrfmmm.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  67. Qureshi IA, Mehler MF (2015) Epigenetics and therapeutic targets mediating neuroprotection. Brain Res 1628(Pt B):265–272. doi:10.1016/j.brainres.2015.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamidi T, Singh AK, Chen T (2015) Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 7(2):247–265. doi:10.2217/epi.14.80

    Article  CAS  PubMed  Google Scholar 

  69. Zoghbi HY, Beaudet AL (2016) Epigenetics and human disease. Cold Spring Harb Perspect Biol 8(2):a019497. doi:10.1101/cshperspect.a019497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Srinageshwar B, Maiti P, Dunbar GL, Rossignol J (2016) Role of epigenetics in stem cell proliferation and differentiation: implications for treating neurodegenerative diseases. Int J Mol Sci 17(2). doi:10.3390/ijms17020199

  71. Lee SL, Thomas P, Fenech M (2015) Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 776:54–83. doi:10.1016/j.mrfmmm.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  72. Fluteau A, Ince PG, Minett T, Matthews FE, Brayne C, Garwood CJ et al (2015) The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neurosci Lett 609:11–17. doi:10.1016/j.neulet.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Podlesniy P, Llorens F, Golanska E, Sikorska B, Liberski P, Zerr I, Trullas R (2016) Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease. Alzheimers Dement 12(5):546–555. doi:10.1016/j.jalz.2015.12.011

    Article  PubMed  Google Scholar 

  74. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D et al (2015) The epigenetics of aging and neurodegeneration. Prog Neurobiol 131:21–64. doi:10.1016/j.pneurobio.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  75. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290. doi:10.1038/nature09342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fischer A (2014) Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology 80:95–102. doi:10.1016/j.neuropharm.2014.01.038

    Article  CAS  PubMed  Google Scholar 

  77. Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58. doi:10.3389/fncel.2015.00058

    PubMed  PubMed Central  Google Scholar 

  78. Gebicke-Haerter PJ, Pildain LV, Matthaus F, Schmitt A, Falkai P (2013) Circadian rhythms investigated on the cellular and molecular levels. Pharmacopsychiatry 46(Suppl 1):S22–S29. doi:10.1055/s-0033-1337923

    CAS  PubMed  Google Scholar 

  79. Lech K, Ackermann K, Revell VL, Lao O, Skene DJ, Kayser M (2016) Dissecting daily and circadian expression rhythms of clock-controlled genes in human blood. J Biol Rhythm 31(1):68–81. doi:10.1177/0748730415611761

    Article  CAS  Google Scholar 

  80. Rosenwasser AM, Turek FW (2015) Neurobiology of circadian rhythm regulation. Sleep Med Clin 10(4):403–412. doi:10.1016/j.jsmc.2015.08.003

    Article  PubMed  Google Scholar 

  81. Hurley JM, Loros JJ, Dunlap JC (2016) Circadian oscillators: around the transcription-translation feedback loop and on to output. Trends Biochem Sci. doi:10.1016/j.tibs.2016.07.009

    PubMed  PubMed Central  Google Scholar 

  82. Dueck A, Berger C, Wunsch K, Thome J, Cohrs S, Reis O, Haessler F (2015) The role of sleep problems and circadian clock genes in attention-deficit hyperactivity disorder and mood disorders during childhood and adolescence: an update. J Neural Transm (Vienna). doi:10.1007/s00702-015-1455-8

    Google Scholar 

  83. Aguilar-Arnal L, Sassone-Corsi P (2015) Chromatin dynamics of circadian transcription. Curr Mol Biol Rep 1(1):1–9. doi:10.1007/s40610-015-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  84. Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes Metab 17(Suppl 1):6–11. doi:10.1111/dom.12514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Laing EE, Johnston JD, Moller-Levet CS, Bucca G, Smith CP, Dijk DJ, Archer SN (2015) Exploiting human and mouse transcriptomic data: identification of circadian genes and pathways influencing health. BioEssays 37(5):544–556. doi:10.1002/bies.201400193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, McClung CA (2016) Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A 113(1):206–211. doi:10.1073/pnas.1508249112

    Article  CAS  PubMed  Google Scholar 

  87. von Schantz M (2008) Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. J Genet 87(5):513–519

    Article  Google Scholar 

  88. Liu C, Chung M (2015) Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci Bull 31(1):141–159. doi:10.1007/s12264-014-1495-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tal O, Kisdi E, Jablonka E (2010) Epigenetic contribution to covariance between relatives. Genetics 184(4):1037–1050. doi:10.1534/genetics.109.112466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frésard L, Morisson M, Brun JM, Collin A, Pain B, Minvielle F, Pitel F (2013) Epigenetics and phenotypic variability: some interesting insights from birds. Genet Sel Evol 45:16. doi:10.1186/1297-9686-45-16

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2(7):e1600584. doi:10.1126/sciadv.1600584

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wüllner U, Kaut O, deBoni L, Piston D, Schmitt I (2016) DNA methylation in Parkinson's disease. J Neurochem, Suppl 1:108–120. doi:10.1111/jnc.13646

    Article  CAS  Google Scholar 

  93. Homs A, Codina-Solà M, Rodríguez-Santiago B, Villanueva CM, Monk D, Cuscó I, Pérez-Jurado LA (2016) Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiat 6(7):e855. doi:10.1038/tp.2016.120

    Article  CAS  Google Scholar 

  94. Karami S, Han Y, Pande M, Cheng I, Rudd J, Pierce BL et al (2016) Telomere structure and maintenance gene variants and risk of five cancer types. Int J Cancer 139(12):2655–2670. doi:10.1002/ijc.30288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stuart T, Eichten SR, Cahn J, Karpievitch YV, Borevitz JO, Lister R (2016) Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife:5. doi:10.7554/eLife.20777

  96. Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T et al DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol 17(1):255. doi:10.1186/s13059-016-1119-5

  97. Calic A, Peterlin B (2015) Epigenetics and bruxism: possible role of epigenetics in the etiology of bruxism. Int J Prosthodont 28(6):594–599. doi:10.11607/ijp.4126

    Article  PubMed  Google Scholar 

  98. Mehta R, Singh A, Bokkon I, Nath Mallick B (2016) REM sleep and its loss-associated epigenetic regulation with reference to noradrenaline in particular. Curr Neuropharmacol 14(1):28–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson CL, Wisor JP, Lee CK, Pathak SD, Gerashchenko D, Smith KA et al (2010) Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 4:165. doi:10.3389/fnins.2010.00165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lhotska H, Zemanova Z, Cechova H, Ransdorfova S, Lizcova L, Kramar F et al (2015) Genetic and epigenetic characterization of low-grade gliomas reveals frequent methylation of the MLH3 gene. Genes Chromosomes Cancer 54(11):655–667. doi:10.1002/gcc.22266

    Article  CAS  PubMed  Google Scholar 

  101. Noguchi S, Mori T, Nakagawa T, Itamoto K, Haraguchi T, Mizuno T (2015) DNA methylation contributes toward silencing of antioncogenic microRNA-203 in human and canine melanoma cells. Melanoma Res 25(5):390–398. doi:10.1097/CMR.0000000000000183

    Article  CAS  PubMed  Google Scholar 

  102. Peedicayil J (2016) Epigenetic targets for the treatment of neurodegenerative diseases. Clin Pharmacol Ther 99(5):481. doi:10.1002/cpt.323

    Article  CAS  PubMed  Google Scholar 

  103. Snigdha S, Prieto GA, Petrosyan A, Loertscher BM, Dieskau AP, Overman LE, Cotman CW (2016) H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J Neurosci 36(12):3611–3622. doi:10.1523/JNEUROSCI.2693-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA (2016) Epigenetic treatment of neurodegenerative disorders: Alzheimer and Parkinson diseases. Drug Dev Res 77(3):109–123. doi:10.1002/ddr.21294

    Article  CAS  PubMed  Google Scholar 

  105. Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol Cell 47(2):158–167. doi:10.1016/j.molcel.2012.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qureshi IA, Mehler MF (2014) Epigenetics of sleep and chronobiology. Curr Neurol Neurosci Rep 14(3):432. doi:10.1007/s11910-013-0432-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Son D, Kim CS, Lee KR, Park HJ (2016) Identification of new quinic acid derivatives as histone deacetylase inhibitors by fluorescence-based cellular assay. Bioorg Med Chem Lett 26(9):2365–2369. doi:10.1016/j.bmcl.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  108. Przespolewski A, Wang ES (2016) Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia. Expert Opin Investig Drugs 25(7):771–780. doi:10.1080/13543784.2016.1175432

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Zhu Y, Wang Q, Hu H, Li Z, Wang D et al (2016) The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett 374(1):12–21. doi:10.1016/j.canlet.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  110. Parish JM (2013) Genetic and immunologic aspects of sleep and sleep disorders. Chest 143(5):1489–1499. doi:10.1378/chest.12-1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Llorens F, Thune K, Schmitz M, Ansoleaga B, Frau-Mendez MA, Cramm M et al (2016) Identification of new molecular alterations in fatal familial insomnia. Hum Mol Genet. doi:10.1093/hmg/ddw108

    PubMed  Google Scholar 

  112. Makela KA, Wigren HK, Zant JC, Sakurai T, Alhonen L, Kostin A et al (2010) Characterization of sleep-wake patterns in a novel transgenic mouse line overexpressing human prepro-orexin/hypocretin. Acta Physiol (Oxf) 198(3):237–249. doi:10.1111/j.1748-1716.2009.02068.x

    Article  CAS  Google Scholar 

  113. Ojeda DA, Nino CL, Lopez-Leon S, Camargo A, Adan A, Forero DA (2014) A functional polymorphism in the promoter region of MAOA gene is associated with daytime sleepiness in healthy subjects. J Neurol Sci 337(1–2):176–179. doi:10.1016/j.jns.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  114. Drake CL, Belcher R, Howard R, Roth T, Levin AM, Gumenyuk V (2015) Length polymorphism in the Period 3 gene is associated with sleepiness and maladaptive circadian phase in night-shift workers. J Sleep Res 24(3):254–261. doi:10.1111/jsr.12264

    Article  PubMed  Google Scholar 

  115. Susman EJ, Dockray S, Schiefelbein VL, Herwehe S, Heaton JA, Dorn LD (2007) Morningness/eveningness, morning-to-afternoon cortisol ratio, and antisocial behavior problems during puberty. Dev Psychol 43(4):811–822

    Article  PubMed  Google Scholar 

  116. Ingram KK, Ay A, Kwon SB, Woods K, Escobar S, Gordon M, Smith IH, Bearden N et al (2016) Molecular insights into chronotype and time-of-day effects on decision-making. Sci Rep 6:29392. doi:10.1038/srep29392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kalmbach, D.A., Schneider, L.D., Cheung, J., Bertrand, S.J., Kariharan, T., Pack, A.I., & Gehrman, P.R. (2016)Genetic basis of chronotype in humans: insights from three landmark GWAS. Sleep

  118. Leone MJ, Fernandez Slezak D, Golombek D, Sigman M (2017) Time to decide: diurnal variations on the speed and quality of human decisions. Cognition 158:44–55. doi:10.1016/j.cognition.2016.10.007

    Article  PubMed  Google Scholar 

  119. Mondin TC, de Azevedo Cardoso T, Moreira FP, Wiener C, Oses JP, de Mattos Souza LD, Jansen K, da Silva Magalhães PV et al (2016) Circadian preferences, oxidative stress and inflammatory cytokines in bipolar disorder: a community study. J Neuroimmunol 301:23–29. doi:10.1016/j.jneuroim.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  120. Owens, J.A., Dearth-Wesley, T., Lewin, D., Gioia, G., & Whitaker, R.C. (2016). Self-regulation and sleep duration, sleepiness, and chronotype in adolescents. Pediatrics, 138(6)

  121. Randler C, Schaal S (2010) Morningness-eveningness, habitual sleep-wake variables and cortisol level. Biol Psychol 85(1):14–18. doi:10.1016/j.biopsycho.2010.04.006

    Article  PubMed  Google Scholar 

  122. Szabadi E (2014) Selective targets for arousal-modifying drugs: implications for the treatment of sleep disorders. Drug Discov Today 19(5):701–708. doi:10.1016/j.drudis.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  123. Zisapel N (2015) Current phase II investigational therapies for insomnia. Expert Opin Investig Drugs 24(3):401–411. doi:10.1517/13543784.2015.987340

    Article  CAS  PubMed  Google Scholar 

  124. Patel SR, Blackwell T, Ancoli-Israel S, Stone KL, Osteoporotic Fractures in Men-MrOS Research Group (2012) Sleep characteristics of self-reported long sleepers. Sleep 35(5):641–648. doi:10.5665/sleep.1822

    PubMed  PubMed Central  Google Scholar 

  125. Blank M, Zhang J, Lamers F, Taylor AD, Hickie IB, Merikangas KR (2015) Health correlates of insomnia symptoms and comorbid mental disorders in a nationally representative sample of US adolescents. Sleep 38(2):197–204. doi:10.5665/sleep.4396

    Article  PubMed  PubMed Central  Google Scholar 

  126. Aziz M, Osondu CU, Younus A, Malik R, Rouseff M, Das S, Guzman H, Maziak W et al (2016) The Association of Sleep Duration and Morbid Obesity in a working population: the Baptist Health South Florida Employee Study. Metab Syndr Relat Disord. doi:10.1089/met.2016.0096

    PubMed  Google Scholar 

  127. Combs D, Goodwin JL, Quan SF, Morgan WJ, Parthasarathy S (2016) Longitudinal differences in sleep duration in Hispanic and Caucasian children. Sleep Med 18:61–66. doi:10.1016/j.sleep.2015.06.008

    Article  PubMed  Google Scholar 

  128. Ehlers, C.L., Wills, D.N., Lau, P., & Gilder, D.A. (2016). Sleep quality in an adult American Indian community sample. J Clin Sleep Med

  129. Jarrin, D.C., Rochefort, A., Ivers, H., Mérette, C., Dauvilliers, Y.A., Savard, J., LeBlanc, M., & Morin, C.M. (2016). Familial aggregation of insomnia. Sleep

  130. Kaufmann CN, Mojtabai R, Hock RS, Thorpe RJ Jr, Canham SL, Chen LY, Wennberg AM, Chen-Edinboro LP et al (2016) Racial/ethnic differences in insomnia trajectories among U.S. older adults. Am J Geriatr Psychiat 24(7):575–584. doi:10.1016/j.jagp.2016.02.049

    Article  Google Scholar 

  131. Kawada T (2016) Sleep duration and metabolic syndrome. Int J Occup Med Environ Health 29(6):877–878. doi:10.13075/ijomeh.1896.00873

    Article  PubMed  Google Scholar 

  132. Kim HB, Myung SK, Lee SM, Park YC, Korean Meta-Analysis (KORMA) Study Group (2016) Longer duration of sleep and risk of cognitive decline: a meta-analysis of observational studies. Neuroepidemiol 47(3–4):171–180

    Article  Google Scholar 

  133. Petrov ME, Lichstein KL (2016) Differences in sleep between black and white adults: an update and future directions. Sleep Med 18:74–81. doi:10.1016/j.sleep.2015.01.011

    Article  PubMed  Google Scholar 

  134. Plante DT, Finn LA, Hagen EW, Mignot E, Peppard PE (2017) Longitudinal associations of hypersomnolence and depression in the Wisconsin Sleep Cohort Study. J Affect Disord 207:197–202. doi:10.1016/j.jad.2016.08.039

    Article  PubMed  Google Scholar 

  135. Scott J, Naismith S, Grierson A, Carpenter J, Hermens D, Scott E, Hickie I (2016) Sleep-wake cycle phenotypes in young people with familial and non-familial mood disorders. Bipolar Disord. doi:10.1111/bdi.12450

    PubMed  Google Scholar 

  136. Ten Have M, Penninx BW, van Dorsselaer S, Tuithof M, Kleinjan M, de Graaf R (2016) Insomnia among current and remitted common mental disorders and the association with role functioning: results from a general population study. Sleep Med:34–41. doi:10.1016/j.sleep.2016.07.015

  137. Zhang J, Chan NY, Lam SP, Li SX, Liu Y, Chan JW, Kong AP, Ma RC et al (2016) Emergence of sex differences in insomnia symptoms in adolescents: a large-scale school-based study. Sleep 39(8):1563–1570. doi:10.5665/sleep.6022

    Article  PubMed  PubMed Central  Google Scholar 

  138. Alvaro PK, Roberts RM, Harris JK, Bruni O (2017) The direction of the relationship between symptoms of insomnia and psychiatric disorders in adolescents. J Affect Disord 207:167–174. doi:10.1016/j.jad.2016.08.032

    Article  PubMed  Google Scholar 

  139. Cagnin A, Fragiacomo F, Camporese G, Turco M, Bussè C, Ermani M, Montagnese S (2017) Sleep-wake profile in dementia with Lewy bodies, Alzheimer's disease, and normal aging. J Alzheimers Dis 55(4):1529–1536. doi:10.3233/JAD-160385

    Article  CAS  PubMed  Google Scholar 

  140. Conroy DA, Czopp AM, Dore-Stites D, Dopp RR, Armitage R, Hoban TF, Arnedt JT (2017) A pilot study on adolescents with depression and insomnia: qualitative findings from focus groups. Behav Sleep Med 15(1):22–38

    Article  CAS  PubMed  Google Scholar 

  141. Moreno-Vecino, B., Arija-Blázquez, A., Pedrero-Chamizo, R., Gómez-Cabello, A., Alegre, L.M., Pérez-López, F.R., González-Gross, M., Casajús, J.A., Ara, I., & EXERNET Group. (2017). Sleep disturbance, obesity, physical fitness and quality of life in older women: EXERNET study group. Climacteric, 2:1–8. doi: 10.1080/13697137.2016.1264934.

  142. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318. doi:10.1038/15490

    Article  CAS  PubMed  Google Scholar 

  143. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100:2538–2543. doi:10.1073/pnas.0436776100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Anway, M.D., Cupp, A.S., Uzumcu, M., 6 Skinner, M.K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466–1469. DOI: 10.1126/science.1108190.

  145. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096. doi:10.1016/j.cell.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E et al (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345:1255903. doi:10.1126/science.1255903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878. doi:10.1073/pnas.1321195111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17(12):733–743. doi:10.1038/nrg.2016.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hanson M, Müller R (2017) Epigenetic inheritance and the responsibility for health in society. Lancet Diabetes Endocrinol 5(1):11–12. doi:10.1016/S2213-8587(16)30400-4

    Article  PubMed  Google Scholar 

  150. Hollick JB (2017) Paramutation and related phenomena in diverse species. Nat Rev Genet 18(1):5–23. doi:10.1038/nrg.2016.115

    Article  CAS  PubMed  Google Scholar 

  151. Isganaitis E, Suehiro H, Cardona C (2017) Who's your daddy?: paternal inheritance of metabolic disease risk. Curr Opin Endocrinol Diabetes Obes 24(1):47–55. doi:10.1097/MED.0000000000000307

    CAS  PubMed  Google Scholar 

  152. Ratnu VS, Emami MR, Bredy TW (2017) Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res 95(1–2):301–310. doi:10.1002/jnr.23886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100. doi:10.1038/ng.708

    Article  CAS  PubMed  Google Scholar 

  154. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 7:679–687. doi:10.1038/nsmb.1821

    Article  CAS  Google Scholar 

  155. Messerschmidt DM (2012) Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 7:969–975. doi:10.4161/epi.21337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X et al (2014) Programming and inheritance of parental DNA methylomes in mammals. Cell 157:979–991. doi:10.1016/j.cell.2014.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wei, Y., Schatten, H., & Sun, Q.Y. (2015). Environmental epigenetic inheritance through gametes and implications for human reproduction. 21(2): 194–208. doi: 10.1093/humupd/dmu061

  158. Holt JB, Zhang X, Sizov N, Croft JB (2015) Airport noise and self-reported sleep insufficiency, United States, 2008 and 2009. Prev Chronic Dis 12:E49. doi:10.5888/pcd12.140551

    PubMed  PubMed Central  Google Scholar 

  159. Linton SJ, Kecklund G, Franklin KA, Leissner LC, Sivertsen B, Lindberg E, Svensson AC, Hansson SO et al (2015) The effect of the work environment on future sleep disturbances: a systematic review. Sleep Med Rev 23(1):–9. doi:10.1016/j.smrv.2014.10.010

  160. Raap T, Pinxten R, Eens M (2015) Light pollution disrupts sleep in free-living animals. Sci Rep 5:13557. doi:10.1038/srep13557

    Article  PubMed  PubMed Central  Google Scholar 

  161. Reid KJ, Abbott SM (2015) Jet lag and shift work disorder. Sleep Med Clin 10(4):523–535. doi:10.1016/j.jsmc.2015.08.006

    Article  PubMed  Google Scholar 

  162. Taniyama Y, Nakamura A, Yamauchi T, Takeuchi S, Kuroda Y (2015) Shift-work disorder and sleep-related environmental factors in the manufacturing industry. J UOEH 37(1):1–10. doi:10.7888/juoeh.37.1

    Article  CAS  PubMed  Google Scholar 

  163. Parkes KR (2016) Age and work environment characteristics in relation to sleep: additive, interactive and curvilinear effects. Appl Ergon 54:41–50. doi:10.1016/j.apergo.2015.11.009

    Article  PubMed  Google Scholar 

  164. Zimprich A (2012) Phenocopies in families with essential tremor and restless legs syndrome challenge Mendelian laws. Epigenetics might provide answers. Parkinsonism Relat Disord 18(6):711–716. doi:10.1016/j.parkreldis.2012.03.019

    Article  PubMed  Google Scholar 

  165. Tinarelli F, Garcia-Garcia C, Nicassio F, Tucci V (2014) Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss. Philos Trans R Soc Lond Ser B Biol Sci 369(1637):20120471. doi:10.1098/rstb.2012.0471

    Article  Google Scholar 

  166. Barclay NL, Gregory AM (2013) Quantitative genetic research on sleep: a review of normal sleep, sleep disturbances and associated emotional, behavioural, and health-related difficulties. Sleep Med Rev 17(1):29–40. doi:10.1016/j.smrv.2012.01.008

    Article  PubMed  Google Scholar 

  167. Toth LA, Bhargava P (2013) Animal models of sleep disorders. Comp Med 63(2):91–104

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gillombardo CB, Darrah R, Dick TE, Moore M, Kong N, Decker MJ, Han F, Yamauchi M et al (2017) C57BL/6J mouse apolipoprotein A2 gene is deterministic for apnea. Respir Physiol Neurobiol 235:88–94. doi:10.1016/j.resp.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  169. Doherty TS, Roth TL (2016) Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain. Dev Psychopathol 28(4 pt2):1229–1243. doi:10.1017/S095457941600081X

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schuebel K, Gitik M, Domschke K, Goldman D (2016) Making sense of epigenetics. Int J Neuropsychopharmacol 19(11). doi:10.1093/ijnp/pyw058

Download references

Acknowledgments

This work was supported by Escuela de Medicina, Universidad Anáhuac Mayab, Mérida, Yucatán, México [PresInvEMR2014]. Funding was given to E.M.-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Murillo-Rodríguez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Lara, D., De-la-Peña, C. & Murillo-Rodríguez, E. Dad’s Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders. Mol Neurobiol 55, 2713–2724 (2018). https://doi.org/10.1007/s12035-017-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0409-6

Keywords

Navigation