Skip to main content
Log in

Neuronal Nitric Oxide Synthase Negatively Regulates Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The study aimed to investigate the role of NO and neuronal NO synthase (nNOS) in Zn-induced neurodegeneration. Animals were treated with zinc sulfate (20 mg/kg), twice a week, for 2–12 weeks along with control. In a few sets, animals were also treated with/without a NO donor, sodium nitroprusside (SNP), or S-nitroso-N-acetyl penicillamine (SNAP) for 12 weeks. Moreover, human neuroblastoma (SH-SY-5Y) cells were also employed to investigate the role of nNOS in Zn-induced toxicity in in vitro in the presence/absence of nNOS inhibitor, 7-nitroindazole (7-NI). Zn caused time-dependent reduction in nitrite content and total/nNOS activity/expression. SNP/SNAP discernibly alleviated Zn-induced neurobehavioral impairments, dopaminergic neurodegeneration, tyrosine hydroxylase (TH) expression, and striatal dopamine depletion. NO donors also salvage from Zn-induced increase in lipid peroxidation (LPO), mitochondrial cytochrome c release, and caspase-3 activation. While Zn elevated LPO content, it attenuated nitrite content, nNOS activity, and glutathione level along with the expression of TH and nNOS in SH-SY-5Y cells. 7-NI further augmented Zn-induced changes in the cell viability, oxidative stress, and expression of TH and nNOS. The results obtained thus demonstrate that Zn inhibits nNOS that partially contributes to an increase in oxidative stress, which subsequently leads to the nigrostriatal dopaminergic neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Söderkvist P, Felice A, Geoparkinson study group (2007) Environmental risk factors for Parkinson’s disease and Parkinsonism: the Geoparkinson study. Occup Environ Med 64:666–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh C, Ahmad I, Kumar A (2007) Pesticides and metals induced Parkinson’s disease: involvement of free radicals and oxidative stress. Cell Mol Biol (Noisy-le-Grand) 53:19–28

    CAS  Google Scholar 

  3. Weisskopf MG, Weuve J, Nie H (2010) Association of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect 118(11):1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dexter DT, Caravon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  6. Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C (2012) Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: Similarity with paraquat neurotoxicity. Brain Res 1438:48–64

    Article  CAS  PubMed  Google Scholar 

  7. Kumar V, Singh BK, Chauhan AK, Singh D, Patel DK, Singh C (2015) Minocycline rescues from zinc-induced nigrostriatal dopaminergic neurodegeneration: Biochemical and molecular interventions. Mol Neurobiol. doi:10.1007/s12035-015-9137-y

    Google Scholar 

  8. Lin AM (2001) Coexistence of zinc and iron augmented oxidative injuries in the nigrostriatal dopaminergic system of SD rats. Free Radic Biol Med 30:225–231

    Article  CAS  PubMed  Google Scholar 

  9. Lin AMY, Fan SF, Yang DM, Hsu LL, Yang CH (2003) Zinc-induced apoptosis in substantia nigra of rat brain: neuroprotection by vitamin D3. Free Radic Biol Med 34:1416–1425

    Article  CAS  PubMed  Google Scholar 

  10. Peterson LJ, Flood PM (2012) Oxidative stress and microglial cells in Parkinson’s disease. Med Inflamm 2012:401264. doi:10.1155/2012/401264, 12 pages

    Article  Google Scholar 

  11. Gupta SP, Yadav S, Singhal NK, Tiwari MN, Mishra SK, Singh MP (2014) Does restraining nitric oxide biosynthesis rescus from toxins-induced Parkinsonism and sporadic Parkinson’s disease? Mol Neurobiol 49:262–275

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP (2015) Cyclosporine A and MnTMPyP alleviate a-synuclein expression and aggregation in cypermethrin-induced Parkinsonism. Mol Neurobiol 52:1619–1628

    Article  CAS  PubMed  Google Scholar 

  13. Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Foster OJ (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res Mol Brain Res 63:62–71

    Article  CAS  PubMed  Google Scholar 

  14. Klivenyi P, Andreassen OA, Ferrante RJ, Lancelot E, Reif D (2000) Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport 11(6):1265–1268

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, Le W (2003) Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem 86:1338–1345

    Article  CAS  PubMed  Google Scholar 

  16. Di Matteo V, Pierucci M, Benigno A, Crescimanno G, Esposito E, Di Giovanni G (2009) Involvement of nitric oxide in nigrostriatal dopaminergic system degeneration. A neurochemical study. Ann NY Acad Sci 1155:309–315

    Article  PubMed  Google Scholar 

  17. Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74(5):2213–2216

    Article  CAS  PubMed  Google Scholar 

  18. Gupta SP, Patel S, Yadav S, Singh AK, Singh S, Singh MP (2010) Involvement of nitric oxide in maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: is there any link with lipid peroxidation? Neurochem Res 35:1206–1213

    Article  CAS  PubMed  Google Scholar 

  19. Chung ES, Chung YC, Bok E, Baik HH, Park ES, Park JY, Yoon SH, Jin BK (2010) Fluoxetine prevents LPS-induced degeneration of nigral dopaminergic neurons by inhibiting microglia-mediated oxidative stress. Brain Res 1363:143–150

    Article  CAS  PubMed  Google Scholar 

  20. Kim BC, Kim YS, Lee JW, Seo JH, Ji ES, Lee H, Park YI, Kim CJ (2011) Protective effect of Coriolus versicolor cultivated in citrus extract against nitric oxide-induced apoptosis in human neuroblastoma SK-N-MC cells. Exp Neurobiol 20:100–109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chetty CS, Reddy GR, Murthy KS, Johnson J, Sajwan K, Desaiah D (2001) Perinatal lead exposure alters the expression of neuronal nitric oxide synthase in rat brain. Int J Toxicol 20(3):113–120

    Article  CAS  PubMed  Google Scholar 

  22. Striefel KM, Moreno JA, Hanneman WH, Legare ME, Tjalkens RB (2012) Gene deletion of nos2 protects against manganese-induced neurological dysfunction in juvenile mice. Toxicol Sci 126:183–192

    Article  Google Scholar 

  23. Persechini A, McMillan K, Masters BS (1995) Inhibition of nitric oxide synthase activity by Zn2+ ion. Biochemistry 34(46):15091–15095

    Article  CAS  PubMed  Google Scholar 

  24. Perry JM, Zhao Y, Marletta MA (2000) Cu2+ and Zn2+ inhibit nitric-oxide synthase through an interaction with the reductase domain. J Biol Chem 275:14070–14076

    Article  CAS  PubMed  Google Scholar 

  25. Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA (2008) Zinc triggers microglial activation. J Neurosci 28:5827–5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh BK, Kumar A, Ahmad I, Kumar V, Patel DK, Jain SK, Singh C (2011) Oxidative stress in Zn-induced dopaminergic neurodegeneration: implications of superoxide dismutase and heme oxygenase-1. Free Radic Res 45:1207–1222

    Article  CAS  PubMed  Google Scholar 

  27. Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C (2010) Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radic Res 44(8):950–965

    Article  CAS  PubMed  Google Scholar 

  28. Ahmad I, Shukla S, Kumar A, Singh BK, Kumar V, Chauhan AK, Singh D, Pandey HP, Singh C (2013) Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats. Chem Biol Interact 201:9–18

    Article  CAS  PubMed  Google Scholar 

  29. Chen LW, Hsu CM, Cha MC, Chen JS, Chen SC (1999) Changes in gut mucosal nitric oxide synthase (NOS) activity after thermal injury and its relation with barrier failure. Shock 11(2):104–110

    Article  CAS  PubMed  Google Scholar 

  30. Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, Huang J, Zhang Z, Hou L, Luo Z, Ghoorah D, Lin Z, Wang T (2013) The role of autophagy in Parkinson’s disease: rotenone-based modeling. Behav Brain Funct 9:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morliere P, Moysan A, Santus R, Huppe G, Maziere JC (1991) UVA-induced lipid peroxidation in cultured human fibroblasts. Biochim Biophys Acta 1084:261–268

    Article  CAS  PubMed  Google Scholar 

  32. Miller RL (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34:55–65

    Article  CAS  PubMed  Google Scholar 

  33. UrRasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP (2015) Resveratrol protects from toxin-induced Parkinsonism: Plethora of proofs hitherto petty translational value. Mol Neurobiol. doi:10.1007/s12035-015-9124-3

    Google Scholar 

  34. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20(4):223–230

    Article  CAS  PubMed  Google Scholar 

  35. Kavya R, Saluja R, Singh S, Dikshit M (2006) Nitric oxide synthase regulation and diversity: Implications in Parkinson’s disease. Nitric oxide 15:280–294

    Article  CAS  PubMed  Google Scholar 

  36. Abou-Mohamed G, Papapetropoulos A, Catravas JD, Caldwell RW (1998) Zn2+ inhibits nitric oxide formation in response to lipopolysaccharides: Implication in its anti-inflammatroy activity. Eur J Pharmacol 341:265–272

    Article  CAS  PubMed  Google Scholar 

  37. Wang HR, Li JS, Chen J, Zhang H (2006) Effects of zinc on activity of NOS and expression of nNOS in hippocampus of acute hypoxic mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 22:395–398

    CAS  PubMed  Google Scholar 

  38. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75:1455–1464

    Article  CAS  PubMed  Google Scholar 

  39. Romero C, Benedi J, Villar A, Martin-Aragon S (2010) Involvement of Hsp70, a stress protein, in the resistance of long term culture of PC12 cells against sodium nitroprusside (SNP)-induced cell death. Arch Toxicol 84:699–708

    Article  CAS  PubMed  Google Scholar 

  40. Chauhan AK, Mittra N, Kumar V, Patel DK, Singh C (2015) Inflammation and B-cell lymphoma-2 associated X protein regulate zinc-induced apoptotic degeneration of rat nigrostriatal dopaminergic neurons. Mol Neurobiol. doi:10.1007/s12035-015-9478-6

    Google Scholar 

  41. Chung ES, Bok E, Chung YC, Baik HH, Byung BK (2012) Cannabinoids prevent lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through inhibition of microglial activation and NADPH oxidase. Brain Res 1451:110–116

    Article  CAS  PubMed  Google Scholar 

  42. Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide (LPS) intranigral injection induced inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  CAS  PubMed  Google Scholar 

  43. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci 101:15944–15948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH (2005) A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res 96:355–362

    Article  CAS  PubMed  Google Scholar 

  45. Hortelano S, Dallaporta B, Zamzami N, Hirsch T, Susin SA, Marzo I, Bosca L, Kroemer G (1997) Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett 410:373–377

    Article  CAS  PubMed  Google Scholar 

  46. Keller J, Owens CT, Lai JC, Devaud LL (2005) The effects of 17 beta-estradiol and ethanol on zinc- or manganese-induced toxicity in SK-N-SH cells. Neurochem Int 46:293–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors sincerely thank University Grants Commission (UGC), New Delhi, India, for providing research fellowship to Brajesh Kumar, Ashutosh Kumar, and Deepali Singh. The Department of Biotechnology (DBT), New Delhi, India, is acknowledged for providing research fellowship to Vinod Kumar. The Council of Scientific and Industrial Research (CSIR), New Delhi, India, is greatly appreciated for extending the fellowship to Amit Kumar Chauhan and financial support to the study through networked program “Integrated NextGen Approaches in Health, Disease and Environmental Toxicity” [INDEPTH (BSC-0111)]. The IITR communication number of this article is 3370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetna Singh.

Ethics declarations

The present study was approved by the institutional animal ethics committee, and the guidelines of the committee for the purpose of control and supervision of experiments on animals (CPCSEA) were stringently followed.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Kumar, V., Chauhan, A.K. et al. Neuronal Nitric Oxide Synthase Negatively Regulates Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration. Mol Neurobiol 54, 2685–2696 (2017). https://doi.org/10.1007/s12035-016-9857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9857-7

Keywords

Navigation