Skip to main content

Advertisement

Log in

Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity. When a diseased artery within the brain bursts, expansion and absorption of the resulting hematoma trigger a series of reactions that cause primary and secondary brain injury. Microglia are extremely important for removing the hematoma and clearing debris, but they are also a source of ongoing inflammation. This article discusses the role of microglial activation/polarization and related inflammatory mediators, such as Toll-like receptor 4, matrix metalloproteinases, high-mobility group protein box-1, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron, in secondary injury after ICH and highlights the potential targets for ICH treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644. doi:10.1016/s0140-6736(09)60371-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke; a journal of cerebral circulation 42(6):1781–1786. doi:10.1161/STROKEAHA.110.596718

    Article  PubMed Central  Google Scholar 

  3. Wu H, Zhang Z, Li Y, Zhao R, Li H, Song Y, Qi J, Wang J (2010) Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochemistry international 57(3):248–253. doi:10.1016/j.neuint.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donnan GA, Hankey GJ, Davis SM (2010) Intracerebral haemorrhage: a need for more data and new research directions. Lancet neurology 9(2):133–134. doi:10.1016/S1474-4422(10)70001-6

    Article  PubMed  Google Scholar 

  5. Wu H, Zhang Z, Hu X, Zhao R, Song Y, Ban X, Qi J, Wang J (2010) Dynamic changes of inflammatory markers in brain after hemorrhagic stroke in humans: a postmortem study. Brain research 1342:111–117. doi:10.1016/j.brainres.2010.04.033

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Dore S (2007) Inflammation after intracerebral hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 27(5):894–908. doi:10.1038/sj.jcbfm.9600403

    Article  CAS  Google Scholar 

  7. Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Frontiers in cellular neuroscience 8:388. doi:10.3389/fncel.2014.00388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mohan S, Ahmad AS, Glushakov AV, Chambers C, Dore S (2012) Putative role of prostaglandin receptor in intracerebral hemorrhage. Frontiers in neurology 3:145. doi:10.3389/fneur.2012.00145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhao X, Wu T, Chang CF, Wu H, Han X, Li Q, Gao Y, Li Q et al (2015) Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain, behavior, and immunity 46:293–310. doi:10.1016/j.bbi.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nature neuroscience 8(6):752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  11. Kim SU, de Vellis J (2005) Microglia in health and disease. Journal of neuroscience research 81(3):302–313. doi:10.1002/jnr.20562

    Article  CAS  PubMed  Google Scholar 

  12. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi:10.1038/nature09615

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Tsirka SE (2005) Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocritical care 3(1):77–85. doi:10.1385/NCC:3:1:077

    Article  CAS  PubMed  Google Scholar 

  14. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campanella M, Sciorati C, Tarozzo G, Beltramo M (2002) Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke; a journal of cerebral circulation 33(2):586–592

    Article  Google Scholar 

  16. Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. International journal of physiology, pathophysiology and pharmacology 5(2):73–90

    PubMed  PubMed Central  Google Scholar 

  17. Mracsko E, Javidi E, Na SY, Kahn A, Liesz A, Veltkamp R (2014) Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke; a journal of cerebral circulation 45(7):2107–2114. doi:10.1161/STROKEAHA.114.005801

    Article  Google Scholar 

  18. Shiratori M, Tozaki-Saitoh H, Yoshitake M, Tsuda M, Inoue K (2010) P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. Journal of neurochemistry 114(3):810–819. doi:10.1111/j.1471-4159.2010.06809.x

    Article  CAS  PubMed  Google Scholar 

  19. Matsushita H, Hijioka M, Ishibashi H, Anan J, Kurauchi Y, Hisatsune A, Seki T, Shudo K et al (2014) Suppression of CXCL2 upregulation underlies the therapeutic effect of the retinoid Am80 on intracerebral hemorrhage in mice. Journal of neuroscience research 92(8):1024–1034. doi:10.1002/jnr.23379

    Article  CAS  PubMed  Google Scholar 

  20. Yang Z, Liu Y, Yuan F, Li Z, Huang S, Shen H, Yuan B (2014) Sinomenine inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage. Molecular immunology 60(2):109–114. doi:10.1016/j.molimm.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  21. Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, Chen W, Cao W et al (2015) PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiology of aging 36(3):1439–1450. doi:10.1016/j.neurobiolaging.2014.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu T, Wu H, Wang J, Wang J (2011) Expression and cellular localization of cyclooxygenases and prostaglandin E synthases in the hemorrhagic brain. Journal of neuroinflammation 8:22. doi:10.1186/1742-2094-8-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J (2015) Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. Journal of cerebral blood flow and metabolism. (in press). doi: 10.1177/0271678X15606462

  24. James ML, Warner DS, Laskowitz DT (2008) Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocritical care 9(1):139–152. doi:10.1007/s12028-007-9030-2

    Article  PubMed  Google Scholar 

  25. MacLellan CL, Silasi G, Auriat AM, Colbourne F (2010) Rodent models of intracerebral hemorrhage. Stroke; a journal of cerebral circulation 41(10 Suppl):S95–98. doi:10.1161/strokeaha.110.594457

    Article  Google Scholar 

  26. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress in neurobiology 92(4):463–477. doi:10.1016/j.pneurobio.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Fields J, Dore S (2008) The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain research 1222:214–221. doi:10.1016/j.brainres.2008.05.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, Begtrup K, Steiner T (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66(8):1175–1181. doi:10.1212/01.wnl.0000208408.98482.99

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Rogove AD, Tsirka AE, Tsirka SE (2003) Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Annals of neurology 54(5):655–664. doi:10.1002/ana.10750

    Article  CAS  PubMed  Google Scholar 

  30. Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH (2004) Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 24(10):1133–1145. doi:10.1097/01.WCB.0000135593.05952.DE

    Article  CAS  Google Scholar 

  31. Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, Roh JK (2004) Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 24(8):926–933. doi:10.1097/01.WCB.0000130866.25040.7D

    Article  CAS  Google Scholar 

  32. Chang CF, Cho S, Wang J (2014) (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of clinical and translational neurology 1(4):258–271. doi:10.1002/acn3.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Dore S (2007) Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain : a journal of neurology 130(Pt 6):1643–1652. doi:10.1093/brain/awm095

    Article  Google Scholar 

  34. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Annals of neurology 61(4):352–362. doi:10.1002/ana.21097

    Article  CAS  PubMed  Google Scholar 

  35. Gong C, Hoff JT, Keep RF (2000) Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain research 871(1):57–65

    Article  CAS  PubMed  Google Scholar 

  36. Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S, Green CJ, Motterlini R (2010) Relationship between leukocyte kinetics and behavioral tests changes in the inflammatory process of hemorrhagic stroke recovery. The International journal of neuroscience 120(12):765–773. doi:10.3109/00207454.2010.523129

    Article  PubMed  Google Scholar 

  37. Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y (2008) Microglial activation and brain injury after intracerebral hemorrhage. Acta neurochirurgica Supplement 105:59–65

    Article  CAS  PubMed  Google Scholar 

  38. Gao Z, Wang J, Thiex R, Rogove AD, Heppner FL, Tsirka SE (2008) Microglial activation and intracerebral hemorrhage. Acta neurochirurgica Supplement 105:51–53

    Article  CAS  PubMed  Google Scholar 

  39. Zhao F, Hua Y, He Y, Keep RF, Xi G (2011) Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke; a journal of cerebral circulation 42(12):3587–3593. doi:10.1161/strokeaha.111.623926

    Article  PubMed Central  Google Scholar 

  40. Wang J, Tsirka SE (2005) Tuftsin fragment 1–3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke; a journal of cerebral circulation 36(3):613–618. doi:10.1161/01.STR.0000155729.12931.8f

    Article  CAS  Google Scholar 

  41. Yang Z, Zhao T, Zou Y, Zhang JH, Feng H (2014) Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunology letters 160(1):89–95. doi:10.1016/j.imlet.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  42. Ohnishi M, Monda A, Takemoto R, Matsuoka Y, Kitamura C, Ohashi K, Shibuya H, Inoue A (2013) Sesamin suppresses activation of microglia and p44/42 MAPK pathway, which confers neuroprotection in rat intracerebral hemorrhage. Neuroscience 232:45–52. doi:10.1016/j.neuroscience.2012.11.057

    Article  CAS  PubMed  Google Scholar 

  43. Miao X, Liu X, Yue Q, Qiu N, Huang W, Wang J, Xu Y, Zhang Y et al (2012) Deferoxamine suppresses microglia activation and protects against secondary neural injury after intracerebral hemorrhage in rats. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 32(7):970–975

    CAS  PubMed  Google Scholar 

  44. Wu H, Wu T, Xu X, Wang J, Wang J (2011) Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 31(5):1243–1250. doi:10.1038/jcbfm.2010.209

    Article  CAS  Google Scholar 

  45. Wu H, Wu T, Li M, Wang J (2012) Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. Neurobiology of disease 45(1):388–394. doi:10.1016/j.nbd.2011.08.028

    Article  CAS  PubMed  Google Scholar 

  46. Bao XJ, Liu FY, Lu S, Han Q, Feng M, Wei JJ, Li GL, Zhao RC et al (2013) Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model. International journal of molecular medicine 31(5):1087–1096. doi:10.3892/ijmm.2013.1290

    CAS  PubMed  Google Scholar 

  47. Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, Wang S, Yuan B (2014) Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. International immunopharmacology 22(2):522–525. doi:10.1016/j.intimp.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  48. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 6:13. doi:10.12703/P6-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61(1):91–103. doi:10.1002/glia.22363

    Article  PubMed  Google Scholar 

  50. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature neuroscience 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  51. Henkel JS, Beers DR, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 4(4):389–398. doi:10.1007/s11481-009-9171-5

    Article  Google Scholar 

  52. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Archivum immunologiae et therapiae experimentalis 60(4):251–266. doi:10.1007/s00005-012-0181-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathology and applied neurobiology 39(1):3–18. doi:10.1111/nan.12011

    Article  CAS  PubMed  Google Scholar 

  54. Orihuela R, McPherson CA, Harry GJ (2015) Microglial M1/M2 polarization and metabolic states. British journal of pharmacology. doi:10.1111/bph.13139

    PubMed  PubMed Central  Google Scholar 

  55. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and cellular neurosciences 31(1):149–160. doi:10.1016/j.mcn.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  56. Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, Chen Y, Qian L et al (2015) Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARgamma-dependent manner. Journal of neuroinflammation 12:51. doi:10.1186/s12974-015-0270-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  58. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. Journal of neuroscience research 81(3):374–389. doi:10.1002/jnr.20488

    Article  CAS  PubMed  Google Scholar 

  59. Dawson DA, Martin D, Hallenbeck JM (1996) Inhibition of tumor necrosis factor-alpha reduces focal cerebral ischemic injury in the spontaneously hypertensive rat. Neuroscience letters 218(1):41–44

    Article  CAS  PubMed  Google Scholar 

  60. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 32(9):1677–1698. doi:10.1038/jcbfm.2012.88

    Article  CAS  Google Scholar 

  61. Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of neuroscience : the official journal of the Society for Neuroscience 22(7):RC216, doi:20026253

    Google Scholar 

  62. Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 15(3):378–384. doi:10.1038/jcbfm.1995.47

    Article  CAS  Google Scholar 

  63. Loihl AK, Asensio V, Campbell IL, Murphy S (1999) Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2-deficient mice. Brain research 830(1):155–164

    Article  CAS  PubMed  Google Scholar 

  64. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. The Journal of neuroscience : the official journal of the Society for Neuroscience 17(23):9157–9164

    CAS  Google Scholar 

  65. Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of neuroinflammation 8:174. doi:10.1186/1742-2094-8-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke; a journal of cerebral circulation 43(11):3063–3070. doi:10.1161/STROKEAHA.112.659656

    Article  CAS  Google Scholar 

  67. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, Liou AK, Leak RK et al (2013) Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 33(12):1864–1874. doi:10.1038/jcbfm.2013.146

    Article  CAS  Google Scholar 

  68. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  Google Scholar 

  69. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. 35 (32):11281–11291. doi:10.1523/jneurosci.1685-15.2015

  70. Hayakawa K, Okazaki R, Morioka K, Nakamura K, Tanaka S, Ogata T (2014) Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury. Journal of neuroscience research 92(12):1647–1658. doi:10.1002/jnr.23448

    Article  CAS  PubMed  Google Scholar 

  71. Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K (2011) Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Annals of neurology 70(4):646–656. doi:10.1002/ana.22528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong Y, Le Y (2011) Toll-like receptors in inflammation of the central nervous system. International immunopharmacology 11(10):1407–1414. doi:10.1016/j.intimp.2011.04.025

    Article  CAS  PubMed  Google Scholar 

  73. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. doi:10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  74. Beutler BA (2009) TLRs and innate immunity. Blood 113(7):1399–1407. doi:10.1182/blood-2008-07-019307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu J, Mohan C (2010) Toll-like receptor signaling pathways—therapeutic opportunities. Mediators of inflammation 2010:781235. doi:10.1155/2010/781235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Progress in neurobiology 115:25–44. doi:10.1016/j.pneurobio.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  77. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY et al (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. Journal of neuroinflammation 9:46. doi:10.1186/1742-2094-9-46

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. Journal of neuroinflammation 10:27. doi:10.1186/1742-2094-10-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Teng W, Wang L, Xue W, Guan C (2009) Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators of inflammation 2009:473276. doi:10.1155/2009/473276

    Article  PubMed  CAS  Google Scholar 

  80. Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW (2013) Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke; a journal of cerebral circulation 44(9):2545–2552. doi:10.1161/strokeaha.113.001038

    Article  CAS  Google Scholar 

  81. Rodriguez-Yanez M, Brea D, Arias S, Blanco M, Pumar JM, Castillo J, Sobrino T (2012) Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. Journal of neuroimmunology 247(1–2):75–80. doi:10.1016/j.jneuroim.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  82. Kim YS, Joh TH (2012) Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomolecules & therapeutics 20(2):133–143. doi:10.4062/biomolther.2012.20.2.133

    Article  CAS  Google Scholar 

  83. Yang Y, Rosenberg GA (2015) Matrix metalloproteinases as therapeutic targets for stroke. Brain research 1623:30–38. doi:10.1016/j.brainres.2015.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chang JJ, Emanuel BA, Mack WJ, Tsivgoulis G, Alexandrov AV (2014) Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 23(10):2498–2505. doi:10.1016/j.jstrokecerebrovasdis.2014.07.005

    Article  Google Scholar 

  85. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Annals of neurology 53(6):731–742. doi:10.1002/ana.10553

    Article  CAS  PubMed  Google Scholar 

  86. Ohnishi M, Katsuki H, Fukutomi C, Takahashi M, Motomura M, Fukunaga M, Matsuoka Y, Isohama Y et al (2011) HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 61(5–6):975–980. doi:10.1016/j.neuropharm.2011.06.026

    Article  CAS  PubMed  Google Scholar 

  87. Hayakawa K, Qiu J, Lo EH (2010) Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Annals of the New York Academy of Sciences 1207:50–57. doi:10.1111/j.1749-6632.2010.05728.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao TL, Yuan XT, Yang D, Dai HL, Wang WJ, Peng X, Shao HJ, Jin ZF et al (2012) Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. The journal of trauma and acute care surgery 72(3):643–649. doi:10.1097/TA.0b013e31823c54a6

    Article  CAS  PubMed  Google Scholar 

  89. Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B (2013) High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats. Neuroscience 228:190–199. doi:10.1016/j.neuroscience.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  90. Wang R, Zhang Q, Yang S, Guo Q (2015) [TNF-alpha induces the release of high mobility group protein B1 through p38 mitogen-activated protein kinase pathway in microglia]. Zhong nan da xue xue bao Yi xue ban = Journal of Central South University Medical sciences 40(9):967–972. doi:10.11817/j.issn.1672-7347.2015.09.004

    CAS  PubMed  Google Scholar 

  91. Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, Xiang J, Li JC et al (2011) HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 31(2):593–605. doi:10.1038/jcbfm.2010.129

    Article  CAS  Google Scholar 

  92. Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B (2013) Effects of high-mobility group box1 on cerebral angiogenesis and neurogenesis after intracerebral hemorrhage. Neuroscience 229:12–19. doi:10.1016/j.neuroscience.2012.10.054

    Article  CAS  PubMed  Google Scholar 

  93. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205. doi:10.1002/glia.10148

    Article  PubMed  Google Scholar 

  94. Ren Y, Silverstein RL, Allen J, Savill J (1995) CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. The Journal of experimental medicine 181(5):1857–1862

    Article  CAS  PubMed  Google Scholar 

  95. Fang H, Chen J, Lin S, Wang P, Wang Y, Xiong X, Yang Q (2014) CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. Journal of immunology 192(12):5984–5992. doi:10.4049/jimmunol.1400054

    Article  CAS  Google Scholar 

  96. Zamora C, Canto E, Nieto JC, Angels Ortiz M, Juarez C, Vidal S (2012) Functional consequences of CD36 downregulation by TLR signals. Cytokine 60(1):257–265. doi:10.1016/j.cyto.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  97. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029. doi:10.1016/j.neuroscience.2008.06.052

    Article  CAS  PubMed  Google Scholar 

  98. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Experimental neurology 275(Pt 3):316–327. doi:10.1016/j.expneurol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Liu DX, Li MY, Qin XX, Fang WG, Zhao WD, Chen YH (2014) Ephrin-A3 and ephrin-A4 contribute to microglia-induced angiogenesis in brain endothelial cells. Anatomical record 297(10):1908–1918. doi:10.1002/ar.22998

    Article  CAS  Google Scholar 

  100. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free radical biology & medicine 88(Pt B):179–188. doi:10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  Google Scholar 

  101. Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA (2005) Nrf2, a multi-organ protector? FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19(9):1061–1066. doi:10.1096/fj.04-2591hyp

    Article  CAS  Google Scholar 

  102. Itoh K, Mimura J, Yamamoto M (2010) Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxidants & redox signaling 13(11):1665–1678. doi:10.1089/ars.2010.3222

    Article  CAS  Google Scholar 

  103. Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. Journal of clinical biochemistry and nutrition 56(2):91–97. doi:10.3164/jcbn.14-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306. doi:10.1016/j.neuropharm.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  105. Li M, Zhang X, Cui L, Yang R, Wang L, Liu L, Du W (2011) The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biological & pharmaceutical bulletin 34(5):595–601

    Article  CAS  Google Scholar 

  106. Liu Y, Zhang L, Liang J (2015) Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. Journal of the neurological sciences 351(1–2):88–92. doi:10.1016/j.jns.2015.02.045

    Article  CAS  PubMed  Google Scholar 

  107. Shih AY, Erb H, Murphy TH (2007) Dopamine activates Nrf2-regulated neuroprotective pathways in astrocytes and meningeal cells. Journal of neurochemistry 101(1):109–119. doi:10.1111/j.1471-4159.2006.04345.x

    Article  CAS  PubMed  Google Scholar 

  108. Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Dore S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 30(12):1951–1961. doi:10.1038/jcbfm.2010.53

    Article  CAS  Google Scholar 

  109. Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC et al (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free radical biology & medicine 65:1012–1022. doi:10.1016/j.freeradbiomed.2013.08.190

    Article  CAS  Google Scholar 

  110. Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, Du Y (2013) Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain research 1497:32–39. doi:10.1016/j.brainres.2012.12.032

    Article  CAS  PubMed  Google Scholar 

  111. Meng H, Guo J, Wang H, Yan P, Niu X, Zhang J (2014) Erythropoietin activates Keap1-Nrf2/ARE pathway in rat brain after ischemia. The International journal of neuroscience 124(5):362–368. doi:10.3109/00207454.2013.848439

    Article  CAS  PubMed  Google Scholar 

  112. Han J, Wang M, Jing X, Shi H, Ren M, Lou H (2014) (−)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochemical research 39(7):1292–1299. doi:10.1007/s11064-014-1311-5

    Article  CAS  PubMed  Google Scholar 

  113. Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S et al (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free radical biology & medicine 43(3):408–414. doi:10.1016/j.freeradbiomed.2007.04.020

    Article  CAS  Google Scholar 

  114. Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke; a journal of cerebral circulation 38(12):3280–3286. doi:10.1161/STROKEAHA.107.486506

    Article  CAS  Google Scholar 

  115. Shang H, Yang D, Zhang W, Li T, Ren X, Wang X, Zhao W (2013) Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit. Free radical research 47(5):368–375. doi:10.3109/10715762.2013.778403

    Article  CAS  PubMed  Google Scholar 

  116. Kwon KJ, Kim JN, Kim MK, Kim SY, Cho KS, Jeon SJ, Kim HY, Ryu JH et al (2013) Neuroprotective effects of valproic acid against hemin toxicity: possible involvement of the down-regulation of heme oxygenase-1 by regulating ubiquitin-proteasomal pathway. Neurochemistry international 62(3):240–250. doi:10.1016/j.neuint.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  117. Dutra FF, Bozza MT (2014) Heme on innate immunity and inflammation. Frontiers in pharmacology 5:115. doi:10.3389/fphar.2014.00115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacological reviews 60(1):79–127. doi:10.1124/pr.107.07104

    Article  CAS  PubMed  Google Scholar 

  119. Raju VS, Maines MD (1994) Coordinated expression and mechanism of induction of HSP32 (heme oxygenase-1) mRNA by hyperthermia in rat organs. Biochimica et biophysica acta 1217(3):273–280

    Article  CAS  PubMed  Google Scholar 

  120. Dennery PA (2014) Signaling function of heme oxygenase proteins. Antioxidants & redox signaling 20(11):1743–1753. doi:10.1089/ars.2013.5674

    Article  CAS  Google Scholar 

  121. Bloomer SA, Zhang HJ, Brown KE, Kregel KC (2009) Differential regulation of hepatic heme oxygenase-1 protein with aging and heat stress. The journals of gerontology Series A, Biological sciences and medical sciences 64(4):419–425. doi:10.1093/gerona/gln056

    Article  PubMed  CAS  Google Scholar 

  122. Terry CM, Clikeman JA, Hoidal JR, Callahan KS (1999) TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells. The American journal of physiology 276(5 Pt 2):H1493–1501

    CAS  PubMed  Google Scholar 

  123. Mandal P, Park PH, McMullen MR, Pratt BT, Nagy LE (2010) The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells. Hepatology (Baltimore, Md) 51(4):1420–1429. doi:10.1002/hep.23427

    Article  CAS  Google Scholar 

  124. Wang J, Dore S (2008) Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 155(4):1133–1141. doi:10.1016/j.neuroscience.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang J, Zhuang H, Dore S (2006) Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiology of disease 22(3):473–476. doi:10.1016/j.nbd.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  126. Chen-Roetling J, Cai Y, Regan RF (2014) Neuroprotective effect of heme oxygenase-2 knockout in the blood injection model of intracerebral hemorrhage. BMC research notes 7:561. doi:10.1186/1756-0500-7-561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Qu Y, Chen-Roetling J, Benvenisti-Zarom L, Regan RF (2007) Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. Journal of neurosurgery 106(3):428–435. doi:10.3171/jns.2007.106.3.428

    Article  PubMed  Google Scholar 

  128. Chen M, Regan RF (2007) Time course of increased heme oxygenase activity and expression after experimental intracerebral hemorrhage: correlation with oxidative injury. Journal of neurochemistry 103(5):2015–2021. doi:10.1111/j.1471-4159.2007.04885.x

    Article  CAS  PubMed  Google Scholar 

  129. Gong Y, Tian H, Xi G, Keep RF, Hoff JT, Hua Y (2006) Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta neurochirurgica Supplement 96:232–236

    Article  CAS  PubMed  Google Scholar 

  130. Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE (2000) Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cellular and molecular biology 46(3):597–608

    CAS  PubMed  Google Scholar 

  131. Chen-Roetling J, Lu X, Regan RF (2015) Targeting heme oxygenase after intracerebral hemorrhage. Therapeutic targets for neurological diseases 2 (1). doi:10.14800/ttnd.474

  132. Perez de la Ossa N, Sobrino T, Silva Y, Blanco M, Millan M, Gomis M, Agulla J, Araya P et al (2010) Iron-related brain damage in patients with intracerebral hemorrhage. Stroke; a journal of cerebral circulation 41(4):810–813. doi:10.1161/strokeaha.109.570168

    Article  CAS  Google Scholar 

  133. Gu Y, Hua Y, He Y, Wang L, Hu H, Keep RF, Xi G (2011) Iron accumulation and DNA damage in a pig model of intracerebral hemorrhage. Acta neurochirurgica Supplement 111:123–128. doi:10.1007/978-3-7091-0693-8_20

    Article  PubMed  Google Scholar 

  134. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 23(6):629–652. doi:10.1097/01.WCB.0000073905.87928.6D

    Article  CAS  Google Scholar 

  135. Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G (2011) Role of iron in brain injury after intraventricular hemorrhage. Stroke; a journal of cerebral circulation 42(2):465–470. doi:10.1161/STROKEAHA.110.602755

    Article  CAS  Google Scholar 

  136. Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR (2006) Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 54(8):795–804. doi:10.1002/glia.20416

    Article  CAS  PubMed  Google Scholar 

  137. Rathnasamy G, Ling EA, Kaur C (2013) Consequences of iron accumulation in microglia and its implications in neuropathological conditions. CNS & neurological disorders drug targets 12(6):785–798

    Article  CAS  Google Scholar 

  138. Labunskyy VM, Gladyshev VN (2013) Role of reactive oxygen species-mediated signaling in aging. Antioxidants & redox signaling 19(12):1362–1372. doi:10.1089/ars.2012.4891

    Article  CAS  Google Scholar 

  139. Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G (2005) Oxidative DNA injury after experimental intracerebral hemorrhage. Brain research 1039(1–2):30–36. doi:10.1016/j.brainres.2005.01.036

    Article  CAS  PubMed  Google Scholar 

  140. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G (2014) Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. doi:10.1038/jcbfm.2014.56

    Google Scholar 

  141. Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G (2014) Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke; a journal of cerebral circulation 45(1):290–292. doi:10.1161/strokeaha.113.003033

    Article  CAS  Google Scholar 

  142. Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G (2013) Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Translational stroke research 4(5):546–553. doi:10.1007/s12975-013-0270-5

    Article  CAS  PubMed  Google Scholar 

  143. Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G (2011) Deferoxamine reduces cavity size in the brain after intracerebral hemorrhage in aged rats. Acta neurochirurgica Supplement 111:185–190. doi:10.1007/978-3-7091-0693-8_31

    Article  PubMed  Google Scholar 

  144. Warkentin LM, Auriat AM, Wowk S, Colbourne F (2010) Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain research 1309:95–103. doi:10.1016/j.brainres.2009.10.058

    Article  CAS  PubMed  Google Scholar 

  145. Chun HJ, Kim DW, Yi HJ, Kim YS, Kim EH, Hwang SJ, Jwa CS, Lee YK et al (2012) Effects of statin and deferoxamine administration on neurological outcomes in a rat model of intracerebral hemorrhage. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 33(2):289–296. doi:10.1007/s10072-011-0733-y

    Article  Google Scholar 

  146. Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, Colbourne F (2012) Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Experimental neurology 234(1):136–143. doi:10.1016/j.expneurol.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  147. Wang G, Hu W, Tang Q, Wang L, Sun XG, Chen Y, Yin Y, Xue F et al (2015) Effect Comparison of Both Iron Chelators on Outcomes, Iron Deposit, and Iron Transporters After Intracerebral Hemorrhage in Rats. Molecular neurobiology. doi:10.1007/s12035-015-9302-3

    Google Scholar 

  148. Yeatts SD, Palesch YY, Moy CS, Selim M (2013) High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocritical care 19(2):257–266. doi:10.1007/s12028-013-9861-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China 81200885, Heilongjiang Postdoctoral Science-Research Foundation LBH-Q13120, the Natural Science Foundation of Heilongjiang Province of China LC2013C30, the Foundation of the First Clinical Hospital of Harbin Medical University 2012LX004, an American Heart Association grant 13GRNT15730001, and the National Institutes of Health (R01NS078026, R01AT007317). We thank Claire Levine for assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Wu.

Additional information

Zhen Zhang and Ze Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, Z., Lu, H. et al. Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Mol Neurobiol 54, 1874–1886 (2017). https://doi.org/10.1007/s12035-016-9785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9785-6

Keywords

Navigation