Skip to main content

Advertisement

Log in

The Brain NO Levels and NOS Activities Ascended in the Early and Middle Stages and Descended in the Terminal Stage in Scrapie-Infected Animal Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The infections of prion agents may cause progressive and fatal neurodegenerative diseases in humans and a serial of animal species. Previous studies have proposed that the levels of nitric oxide (NO) and nitric oxide synthase (NOS) in the brains of some neurodegeneration diseases changed, while S-nitrosylation (SNO) of many brain proteins altered in prion diseases. To elucidate the potential changes of brain NO levels during prion infection, the NO levels and NOS activities in the brain tissues of three scrapie experimental rodents were measured, including scrapie agent 263 K-infected hamsters and 139A- and ME7-infected mice. Both NO levels and NOS activities, including total NOS (TNOS) and inducible NOS (iNOS), were increased at the terminal stages of scrapie-infected animals. Assays of the brain samples collected at different time points during scrapie infection showed that the NO levels and NOS activities started to increase at early stage, reached to the peak in the middle stage, and dropped down at late stage. Western blots for brain iNOS revealed increased firstly and decreased late, especially in the brains of 139A- and ME7-infected mice. In line with those alterations, the levels of the SNO forms of several selected brain proteins such as aquaporin-1 (AQP1), calcium/calmodulin-dependent protein kinase II (CaMKII), neurogranin, and opalin, underwent similar changing trends, while their total protein levels did not change obviously during scrapie infection. Our data here for the first time illustrate the changing profile of brain NO and NOS during prion infection. Time-dependent alterations of brain NO level and the associated protein S-nitrosylation process may contribute greatly to the neuropathological damage in prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144. doi:10.1126/science.6801762

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi A, Weissmann C (1997) Prion research: the next frontiers. Nature 389(6653):795–798. doi:10.1038/39758

    Article  CAS  PubMed  Google Scholar 

  3. Johnson RT (2005) Prion diseases. Lancet Neurol 4(10):635–642. doi:10.1016/S1474-4422(05)70192-7

    Article  CAS  PubMed  Google Scholar 

  4. Imran M, Mahmood S (2011) An overview of human prion diseases. Virol J 8:559. doi:10.1186/1743-422X-8-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torres M, Encina G, Soto C, Hetz C (2011) Abnormal calcium homeostasis and protein folding stress at the ER: a common factor in familial and infectious prion disorders. Commun Integr Biol 4(3):258–261. doi:10.4161/cib.4.3.15019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castellani RJ, Perry G, Smith MA (2004) Prion disease and Alzheimer’s disease: pathogenic overlap. Acta Neurobiol Exp 64(1):11–17

    Google Scholar 

  7. Murad F (2006) Shattuck lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355(19):2003–2011. doi:10.1056/NEJMsa063904

    Article  CAS  PubMed  Google Scholar 

  8. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837. doi:10.1093/eurheartj/ehr304, 837a-837d

    Article  PubMed  Google Scholar 

  9. Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Article  CAS  PubMed  Google Scholar 

  10. Shukla R (2007) Nitric oxide in neurodegeneration. Ann Neurosci 14(1):13–20. doi:10.5214/ans.0972.7531.2007.140104

    Article  CAS  Google Scholar 

  11. Keshet GI, Ovadia H, Taraboulos A, Gabizon R (1999) Scrapie-infected mice and PrP knockout mice share abnormal localization and activity of neuronal nitric oxide synthase. J Neurochem 72(3):1224–1231. doi:10.1046/j.1471-4159.1999.0721224.x

    Article  CAS  PubMed  Google Scholar 

  12. Heneka MT, Wiesinger H, Dumitrescu-Ozimek L, Riederer P, Feinstein DL, Klockgether T (2001) Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J Neuropathol Exp Neurol 60(9):906–916

    Article  CAS  PubMed  Google Scholar 

  13. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA (1999) Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 19(14):5910–5918

    CAS  PubMed  Google Scholar 

  14. Zhang ZG, Chopp M, Bailey F, Malinski T (1995) Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci 128(1):22–27

    Article  CAS  PubMed  Google Scholar 

  15. Endoh M, Maiese K, Wagner J (1994) Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res 651(1–2):92–100

    Article  CAS  PubMed  Google Scholar 

  16. Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF (1997) The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174(1–2):193–197

    Article  CAS  PubMed  Google Scholar 

  17. Molina JA, Jimenez-Jimenez FJ, Orti-Pareja M, Navarro JA (1998) The role of nitric oxide in neurodegeneration. Potential for pharmacological intervention. Drugs Aging 12(4):251–259

    Article  CAS  PubMed  Google Scholar 

  18. Ju WK, Park KJ, Choi EK, Kim J, Carp RI, Wisniewski HM, Kim YS (1998) Expression of inducible nitric oxide synthase in the brains of scrapie-infected mice. J Neurovirol 4(4):445–450

    Article  CAS  PubMed  Google Scholar 

  19. Ye X, Meeker HC, Scallet AC, Carp RI (2001) Comparison of NADPH diaphorase activity in the brains of hamsters infected with scrapie strains 139H or 263K or with normal hamster brain homogenate. Histol Histopathol 16(4):997–1004

    CAS  PubMed  Google Scholar 

  20. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89(1):444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18(9):1478–1486. doi:10.1038/cdd.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura T, Lipton SA (2013) Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 18(3):239–249. doi:10.1089/ars.2012.4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen T, Toussaint J, Xue Y, Raval C, Cancel L, Russell S, Shou Y, Sedes O et al (2015) Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium. Am J Physiol Heart Circ 308(9):H1051–H1064. doi:10.1152/ajpheart.00499.2014

    Article  CAS  Google Scholar 

  24. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3(3):175–190. doi:10.1038/nrn753

    Article  CAS  PubMed  Google Scholar 

  25. Diez-Guerra FJ (2010) Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 62(8):597–606. doi:10.1002/iub.357

    Article  CAS  PubMed  Google Scholar 

  26. Montine TJ, Markesbery WR, Morrow JD, Roberts LJ (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann Neurol 44(3):410–413. doi:10.1002/ana.410440322

    Article  CAS  PubMed  Google Scholar 

  27. Yoshikawa F, Sato Y, Tohyama K, Akagi T, Hashikawa T, Nagakura-Takagi Y, Sekine Y, Morita N et al (2008) Opalin, a transmembrane sialylglycoprotein located in the central nervous system myelin paranodal loop membrane. J Biol Chem 283(30):20830–20840. doi:10.1074/jbc.M801314200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorval V, Mandemakers W, Jolivette F, Coudert L, Mazroui R, De Strooper B, Hébert SS (2014) Gene and microRNA transcriptome analysis of Parkinson’s related LRRK2 mouse models. PLoS One 9(1):e85510. doi:10.1371/journal.pone.0085510

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen LN, Shi Q, Zhang BY, Zhang XM, Wang J, Xiao K, Lv Y, Sun J et al (2015) Proteomic analyses for the global S-nitrosylated proteins in the brain tissues of different human prion diseases. Mol Neurobiol. doi:10.1007/s12035-015-9440-710.1007/s12035-015-9440-7

    Google Scholar 

  30. Zhang J, Chen L, Zhang BY, Han J, Xiao XL, Tian HY, Li BL, Gao C et al (2004) Comparison study on clinical and neuropathological characteristics of hamsters inoculated with scrapie strain 263K in different challenging pathways. Biomed Environ Sci 17(1):65–78

    PubMed  Google Scholar 

  31. Shi Q, Zhang BY, Gao C, Zhang J, Jiang HY, Chen C, Han J, Dong XP (2012) Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 9:63. doi:10.1186/1743-422X-9-63

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen LN, Shi Q, Zhang XM, Zhang BY, Lv Y, Chen C, Zhang J, Xiao K et al (2015) Optimization of the isolation and enrichment of S-nitrosylated proteins from brain tissues of rodents and humans with various prion diseases for iTRAQ-based proteomics. Int J Mol Med 35(1):125–134. doi:10.3892/ijmm.2014.1975

    CAS  PubMed  Google Scholar 

  33. Schuman EM, Madison DV (1994) Nitric oxide and synaptic function. Annu Rev Neurosci 17:153–183. doi:10.1146/annurev.ne.17.030194.001101

    Article  CAS  PubMed  Google Scholar 

  34. Bohme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC (1991) Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 199(3):379–381

    Article  CAS  PubMed  Google Scholar 

  35. Shibuki K, Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349(6307):326–328. doi:10.1038/349326a0

    Article  CAS  PubMed  Google Scholar 

  36. Gotoh T, Mori M (2006) Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc 26(7):1439–1446. doi:10.1161/01.ATV.0000223900.67024.15

    Article  CAS  Google Scholar 

  37. Derakhshan B, Hao G, Gross SS (2007) Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 75(2):210–219. doi:10.1016/j.cardiores.2007.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15(9):391–404. doi:10.1016/j.molmed.2009.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein S-nitrosylation in neurodegenerative diseases. Neuron 78(4):596–614. doi:10.1016/j.neuron.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zochodne DW, Levy D, Zwiers H, Sun H, Rubin I, Cheng C, Lauritzen M (1999) Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience 91(4):1515–1527

    Article  CAS  PubMed  Google Scholar 

  41. Fabrizi C, Silei V, Menegazzi M, Salmona M, Bugiani O, Tagliavini F, Suzuki H, Lauro GM (2001) The stimulation of inducible nitric-oxide synthase by the prion protein fragment 106–126 in human microglia is tumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase. J Biol Chem 276(28):25692–25696. doi:10.1074/jbc.M100133200

    Article  CAS  PubMed  Google Scholar 

  42. Ovadia H, Rosenmann H, Shezen E, Halimi M, Ofran I, Gabizon R (1996) Effect of scrapie infection on the activity of neuronal nitric-oxide synthase in brain and neuroblastoma cells. J Biol Chem 271(28):16856–16861

    Article  CAS  PubMed  Google Scholar 

  43. Akaike T, Weihe E, Schaefer M, Fu ZF, Zheng YM, Vogel W, Schmidt H, Koprowski H et al (1995) Effect of neurotropic virus infection on neuronal and inducible nitric oxide synthase activity in rat brain. J Neurovirol 1(1):118–125

    Article  CAS  PubMed  Google Scholar 

  44. Ying P, Minsheng Z, Yue S et al (1999) Expression of iNOS N terminal in E. coli and preparation of the specific antibody against iNOS. Chin J Microbiol Immunol 04(4):279–281

    Google Scholar 

  45. Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78(1):69–86. doi:10.1016/j.schres.2005.05.019

    Article  PubMed  Google Scholar 

  46. Santamaria D, Espinoza-Gonzalez V, Rios C, Santamaria A (1999) Nomega-nitro-L-arginine, a nitric oxide synthase inhibitor, antagonizes quinolinic acid-induced neurotoxicity and oxidative stress in rat striatal slices. Neurochem Res 24(7):843–848

    Article  CAS  PubMed  Google Scholar 

  47. Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 92(26):12041–12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Munoz-Fernandez MA, Fresno M (1998) The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol 56(3):307–340

    Article  CAS  PubMed  Google Scholar 

  49. Loscalzo J, Welch G (1995) Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38(2):87–104

    Article  CAS  PubMed  Google Scholar 

  50. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265(5180):1883–1885

    Article  CAS  PubMed  Google Scholar 

  51. Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev 35(1):73–96

    Article  CAS  PubMed  Google Scholar 

  52. Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64(2):936–939

    Article  CAS  PubMed  Google Scholar 

  53. Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT, Beal MF (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2(9):1017–1021

    Article  CAS  PubMed  Google Scholar 

  54. Yew DT, Wong HW, Li WP, Lai HW, Yu WH (1999) Nitric oxide synthase neurons in different areas of normal aged and Alzheimer’s brains. Neuroscience 89(3):675–686

    Article  CAS  PubMed  Google Scholar 

  55. Matthews RT, Beal MF, Fallon J, Fedorchak K, Huang PL, Fishman MC, Hyman BT (1997) MPP+ induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol Dis 4(2):114–121. doi:10.1006/nbdi.1997.0141

    Article  CAS  PubMed  Google Scholar 

  56. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A 93(10):4565–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G (2015) Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 22(9):772–784. doi:10.1089/ars.2014.6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166(3):796–807. doi:10.1016/j.neuroscience.2010.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan Z, Yong-Guang T, Fei-Jun L, Fa-Qing T, Min T, Ya C (2004) Interference effect of epigallocatechin-3-gallate on targets of nuclear factor kappaB signal transduction pathways activated by EB virus encoded latent membrane protein 1. Int J Biochem Cell Biol 36(8):1473–1481. doi:10.1016/j.biocel.2003.10.024

    CAS  PubMed  Google Scholar 

  60. Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, Hamilton JL, Simonyi A et al (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation 8:121. doi:10.1186/1742-2094-8-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5(12):1403–1409. doi:10.1038/70978

    Article  CAS  PubMed  Google Scholar 

  62. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21(17):6480–6491

    CAS  PubMed  Google Scholar 

  63. Brown DR, Kretzschmar HA (1997) Microglia and prion disease: a review. Histol Histopathol 12(3):883–892

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (Grants 81301429 and 81572048), China Mega-Project for Infectious Disease (2011ZX10004-101 and 2012ZX10004215), and SKLID Development (Grants 2012SKLID102 and 2015SKLID503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Shi or Xiao-Ping Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LN., Sun, J., Yang, XD. et al. The Brain NO Levels and NOS Activities Ascended in the Early and Middle Stages and Descended in the Terminal Stage in Scrapie-Infected Animal Models. Mol Neurobiol 54, 1786–1796 (2017). https://doi.org/10.1007/s12035-016-9755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9755-z

Keywords

Navigation