Skip to main content

Advertisement

Log in

Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuropathic pain and hippocampal injury can arise from the overload of diabetes-induced calcium ion (Ca2+) entry and oxidative stress. The transient receptor potential (TRP) melastatin 2 (TRPM2) and TRP vanilloid type 1 (TRPV1) are expressed in sensory neurons and hippocampus. Moreover, activations of TRPM2 and TRPV1 during oxidative stress have been linked to neuronal death. Melatonin (MEL) and selenium (Se) have been considered potent antioxidants that detoxify a variety of reactive oxygen species (ROS) in neurological diseases. In order to better characterize the actions of MEL and Se in diabetes-induced peripheral pain and hippocampal injury through modulation of TRPM2 and TRPV1, we tested the effects of MEL and Se on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of streptozotocin (STZ)-induced diabetic rats. Fifty-eight rats were divided into six groups. The first group was used as control. The second group was used as the diabetic group. The third and fourth groups received Se and MEL, respectively. Intraperitoneal Se and MEL were given to diabetic rats in the fifth and sixth groups. On the 14th day, hippocampal and DRG neuron samples were freshly taken from all animals. The neurons were stimulated with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We observed a modulator role of MEL and Se on intracellular free Ca2+ concentrations, current densities of TRPM2 and TRPV1 channels, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, reduced glutathione, glutathione peroxidase, lipid peroxidation, and intracellular ROS production values in the neurons. In addition, procaspase 3 and 9 activities in western blot analyses of the brain cortex were also decreased by MEL and Se treatments. In conclusion, in our diabetes experimental model, TRPM2 and TRPV1 channels are involved in the Ca2+ entry-induced neuronal death and modulation of this channel activity by MEL and Se treatment may account for their neuroprotective activity against apoptosis and Ca2+ entry.

Possible molecular pathways of involvement of melatonin and selenium in diabetes-induced apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in the hippocampus and DRG neurons of rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress although it is inhibited by ACA. The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine (CPZ). Diabetes can result in augmented ROS release in hippocampal and DRG neurons through polyol reactions, leading to Ca2+ uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca2+ provided intracellular Ca2+ rises, thereby leading to the depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. Melatonin and selenium reduce TRPM2 and TRPV1 channel activation through the modulation of polyol oxidative reactions and selenium-dependent glutathione peroxidase (GSH-Px) antioxidant pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

[Ca2+]i :

Intracellular free calcium ion

ACA:

N-(p-amylcinnamoyl) anthranilic acid

ADPR:

ADP-ribose

CAP:

Capsaicin

CHPx:

Cumene hydroperoxide

CPZ:

Capsazepine

DMSO:

Dimethyl sulfoxide

DRG:

Dorsal root ganglion

EGTA:

Ethylene glycol-bis[2-aminoethyl-ether]-N,N,N,N-tetraacetic acid

GSH:

Reduced glutathione

GSH-Px:

Glutathione peroxidase

HBSS:

Hank’s buffered salt solution

ROS:

Reactive oxygen species

TRP:

Transient receptor potential

TRPM2:

Transient receptor potential Mu

TRPV1:

Transient receptor potential vanilloid 1

WC:

Whole cell

References

  1. Umeda M, Ohkubo T, Ono J, Fukuizumi T, Kitamura K (2006) Molecular and immunohistochemical studies in expression of voltage-dependent Ca2+ channels in dorsal root ganglia from streptozotocin-induced diabetic mice. Life Sci 79:1995–2000

    Article  CAS  PubMed  Google Scholar 

  2. Nazıroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca(2)(+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37:2065–2075

    Article  PubMed  Google Scholar 

  3. Fernyhough P, Calcutt NA (2010) Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47:130–139

    Article  CAS  PubMed  Google Scholar 

  4. Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O (2009) Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 109:1800–1811

    Article  CAS  PubMed  Google Scholar 

  5. Gironès X, Guimerà A, Cruz-Sánchez CZ, Ortega A, Sasaki N, Makita Z, Lafuente JV, Kalaria R et al (2004) N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med 36:1241–1247

    Article  PubMed  Google Scholar 

  6. Koneri RB, Samaddar S, Simi SM, Rao ST (2014) Neuroprotective effect of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl in diabetic peripheral neuropathy. Indian J Pharmacol 46:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang YP, Song CY, Yuan Y, Eber A, Rodriguez Y, Levitt RC, Takacs P, Yang Z et al (2013) Diabetic neuropathic pain development in type 2 diabetic mouse model and the prophylactic and therapeutic effects of coenzyme Q10. Neurobiol Dis 58:169–178

    Article  CAS  PubMed  Google Scholar 

  8. Kahya MC, Nazıroğlu M, Çiğ B (2015) Melatonin and selenium reduce plasma cytokine and brain oxidative stress levels in diabetic rats. Brain Inj 29:1490–1496

    Article  PubMed  Google Scholar 

  9. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW et al (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  11. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  CAS  PubMed  Google Scholar 

  12. Uğuz AC, Nazıroğlu M (2012) Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res 37:1631–1638

    Article  PubMed  Google Scholar 

  13. McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 4:339–3351

    Article  CAS  PubMed  Google Scholar 

  14. Uğuz AC, Naziroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  15. Nazıroğlu M, Özgül C, Küçükayaz M, Çiğ B, Hebeisen S, Bal R (2013) Selenium modulates oxidative stress-induced TRPM2 cation channel currents in transfected Chinese hamster ovary cells. Basic Clin Pharmacol Toxicol 112:96–102

    Article  PubMed  Google Scholar 

  16. Köse SA, Nazıroğlu M (2014) Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol Trace Elem Res 158:136–142

    Article  PubMed  Google Scholar 

  17. Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108

    Article  CAS  PubMed  Google Scholar 

  18. Celik O, Nazıroğlu M (2012) Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav 107:458–465

    Article  CAS  PubMed  Google Scholar 

  19. Reiter RJ, Garcia JJ, Pie J (1998) Oxidative toxicity in models of neurodegeneration: responses to melatonin. Restor Neurol Neurosci 12:135–142

    CAS  PubMed  Google Scholar 

  20. Baydas G, Reiter RJ, Akbulut M, Tuzcu M, Tamer S (2015) Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels. Neuroscience 135:879–886

    Article  Google Scholar 

  21. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794

    Article  CAS  PubMed  Google Scholar 

  23. Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    Article  CAS  PubMed  Google Scholar 

  24. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong S, Agresta L, Guo C, Wiley JW (2008) The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy. J Neurochem 105:1212–1222

    Article  CAS  PubMed  Google Scholar 

  27. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135(1-2):162–168

    Article  PubMed  Google Scholar 

  28. Özdemir ÜS, Nazıroğlu M, Şenol N, Ghazizadeh V. (2015) Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol Neurobiol. doi:10.1007/s12035-015-9292-1

  29. Nazıroğlu M, Övey İS (2015) Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience 293:55–66

    Article  PubMed  Google Scholar 

  30. Zeng B, Chen GL, Xu SZ (2012) Divalent copper is a potent extracellular blocker for TRPM2 channel. Biochem Biophys Res Commun 424:279–284

    Article  CAS  PubMed  Google Scholar 

  31. Sözbir E, Nazıroğlu M. (2015) Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis. doi:10.1007/s11011-015-9769-7

  32. Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  33. Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2010) Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233:105–118

    Article  CAS  PubMed  Google Scholar 

  34. Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206

    Article  CAS  PubMed  Google Scholar 

  35. Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA et al (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400

    Article  CAS  PubMed  Google Scholar 

  36. Rothe G, Oser A, Valet G (1988) Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften 75:354–355

    Article  CAS  PubMed  Google Scholar 

  37. Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Analytical Biochem 16:359–364

    Article  CAS  Google Scholar 

  38. Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Analytical Biochem 25:192–205

    Article  CAS  Google Scholar 

  39. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Com 71:952–958

    Article  CAS  PubMed  Google Scholar 

  40. Koşar PA, Nazıroğlu M, Övey İS, Çiğ B. (2015) Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: involvement of TRPV1 channels. J Membr Biol. doi:10.1007/s00232-015-9855-0

  41. Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, Russo E, Whalley BJ et al (2014) Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 5:1131–1141

    Article  CAS  PubMed  Google Scholar 

  42. Shi Y (2002) Apoptosome: the cellular engine for the activation of caspase-9. Structure 10:285–288

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  44. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  45. Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS (2008) Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y et al (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126

    Article  CAS  PubMed  Google Scholar 

  47. Reuss S, Disque-Kaiser U, Binzen U, Greffrath W, Peschke E (2010) ‘TRPing’ synaptic ribbon function in the rat pineal gland: neuroendocrine regulation involves the capsaicin receptor TRPV1. Neuroendocrinology 92:133–142

    Article  CAS  PubMed  Google Scholar 

  48. Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS (2011) Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1 (TRPV1) and inflammatory mediators. Mol Pain 2:7–52

    Google Scholar 

  49. Chen YJ, Huang CW, Lin CS, Chang WH, Sun WH (2009) Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Mol Pain 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  50. Macias B, Gomez-Pinilla PJ, Camello-Almaraz C, Pascua P, Tresguerres JA, Camello PJ, Pozo MJ (2012) Aging impairs Ca2+ sensitization pathways in gallbladder smooth muscle. Age (Dordr) 34:881–893

    Article  CAS  Google Scholar 

  51. Flatters SJ (2015) The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci 131:119–146

    Article  PubMed  Google Scholar 

  52. Carrasco C, Rodriguez AB, Pariente JA (2015) Melatonin as a stabilizer of mitochondrial function: role in diseases and aging. Turk J Biol 39:822–831

    Article  CAS  Google Scholar 

  53. Gupta S, Sharma B (2014) Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol, Biochem Behav 122:122–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The abstract of the study was partially published in the “5th International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels, 9–12 September 2014, Isparta, Turkey” (http://www.cmos.org.tr/2014/). The authors declare that there is no conflict of interest in the current study.

Authorship Contributions

MN and MCK formulated the hypothesis and was responsible for writing the report. MCK was also responsible for the Ca2+ analyses and animal experiments such as the induction of diabetes and injection of melatonin and selenium. İSÖ performed the Western blot, apoptosis, and mitochondrial depolarization analyses. The authors wish to thank Fatih Şahin and Muhammet Şahin (Neuroscience Research Center, SDU, Isparta, Turkey) for helping with the patch-clamp, lipid peroxidation, and antioxidant analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmet Cemal Kahya or Mustafa Nazıroğlu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Financial Disclosure

The study was supported by the Unit of Scientific Research Project (BAP), İzmir Katip Çelebi University, İzmir, Turkey (Project Number: BAP: 2014-1-TIP-02). There is no financial disclosure for the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahya, M.C., Nazıroğlu, M. & Övey, İ.S. Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium. Mol Neurobiol 54, 2345–2360 (2017). https://doi.org/10.1007/s12035-016-9727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9727-3

Keywords

Navigation