Skip to main content
Log in

Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress is closely related to the pathogenesis of ischemic stroke. Protocatechualdehyde (PCA) is a phenolic acid compound that has the putative antioxidant activities. The present study was aimed to investigate the molecular mechanisms involved in the antioxidative effect of PCA against cerebral ischemia/reperfusion (I/R) injury. The experiment stroke model was produced in Sprague–Dawley rats via middle cerebral artery occlusion (MCAO). To model ischemia-like conditions in vitro, differentiated SH-SY5Y cells were exposed to transient oxygen and glucose deprivation (OGD). Treatment with PCA significantly improved neurologic score, reduced infarct volume and necrotic neurons, and also decreased reactive oxygen species (ROS) production, 4-hydroxynonenal (4-HNE), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) contents at 24 h after reperfusion. Meanwhile, PCA significantly increased the transcription nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in the ischemic cerebral cortex as shown by immunofluorescence staining and Western blot analysis. In vitro experiment showed that PCA protected differentiated SH-SY5Y cells against OGD-induced injury. Likewise, PCA also increased markedly the Nrf2 and HO-1 expressions in a dose-dependent manner. The neuroprotection effect of PCA was abolished by knockdown of Nrf2 and HO-1. Moreover, knockdown of protein kinase Cε (PKCε) also blocked PCA-induced Nfr2 nuclear translocation, HO-1 expression, and neuroprotection. Taken together, these results provide evidences that PCA can protect against cerebral ischemia-reperfusion-induced oxidative injury, and the neuroprotective effect involves the PKCε/Nrf2/HO-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feigin VL, Mensah GA, Norrving B, Murray CJ, Roth GA, GBD 2013 Stroke Panel Experts Group (2015) Atlas of the Global Burden of Stroke (1990–2013): The GBD 2013 Study. Neuroepidemiology 45(3):230–236

    Article  PubMed  PubMed Central  Google Scholar 

  2. Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10(7):644–654

    CAS  PubMed  Google Scholar 

  3. Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38(11):1433–1444

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Ye F, Li L, Chang W, Wu X, Chen J (2015) The role of HO-1 in protection against lead-induced neurotoxicity. Neurotoxicology 52:1–11

    Article  PubMed  Google Scholar 

  5. Ding Y, Chen M, Wang M, Li Y, Wen A (2015) Posttreatment with 11-Keto-beta-Boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol Neurobiol 52(3):1430–1439

    Article  CAS  PubMed  Google Scholar 

  6. Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4(4):615–624

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7(3–4):385–394

    Article  CAS  PubMed  Google Scholar 

  8. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208–1213

    Article  CAS  PubMed  Google Scholar 

  9. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33(3–4):255–271

    Article  CAS  PubMed  Google Scholar 

  10. Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546(2–3):181–184

    Article  CAS  PubMed  Google Scholar 

  11. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, Yoshida T (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 285(2):C334–C342

    Article  CAS  PubMed  Google Scholar 

  12. Peng B, Zhao P, Lu YP, Chen MM, Sun H, Wu XM, Zhu L (2013) Z-ligustilide activates the Nrf2/HO-1 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Brain Res 1520:168–177

    Article  CAS  PubMed  Google Scholar 

  13. Guo C, Zhu Y, Weng Y, Wang S, Guan Y, Wei G, Yin Y, Xi M et al (2014) Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. J Ethnopharmacol 151(1):660–666

    Article  CAS  PubMed  Google Scholar 

  14. Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    Article  CAS  PubMed  Google Scholar 

  15. Gao JW, Yamane T, Maita H, Ishikawa S, Iguchi-Ariga SM, Pu XP, Ariga H (2011) DJ-1-Mediated protective effect of protocatechuic aldehyde against oxidative stress in SH-SY5Y cells. J Pharmacol Sci 115(1):36–44

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Ji Y, Kang Z, Lv C, Jiang W (2015) Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicol Appl Pharmacol 283(1):50–56

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Liu Y, Miao AD, Wang SQ (2005) Protocatechuic aldehyde suppresses TNF-alpha-induced ICAM-1 and VCAM-1 expression in human umbilical vein endothelial cells. Eur J Pharmacol 513(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  18. Xing YL, Zhou Z, Agula ZZY, Ma YJ, Zhao YL, Xiao XH, Wang SQ (2012) Protocatechuic aldehyde inhibits lipopolysaccharide-induced human umbilical vein endothelial cell apoptosis via regulation of caspase-3. Phytother Res 26(9):1334–1341

    Article  CAS  PubMed  Google Scholar 

  19. Wei G, Guan Y, Yin Y, Duan J, Zhou D, Zhu Y, Quan W, Xi M et al (2013) Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36(3):592–602

    Article  CAS  PubMed  Google Scholar 

  20. Zhao X, Zhai S, An MS, Wang YH, Yang YF, Ge HQ, Liu JH, Pu XP (2013) Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson’s disease. PLoS One 8(10):e78220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, Lu Z (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 96(1):233–237

    CAS  PubMed  Google Scholar 

  22. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  PubMed  Google Scholar 

  23. Belayev L, Khoutorova L, Deisher TA, Belayev A, Busto R, Zhang Y, Zhao W, Ginsberg MD (2003) Neuroprotective effect of SolCD39, a novel platelet aggregation inhibitor, on transient middle cerebral artery occlusion in rats. Stroke 34(3):758–763

    Article  CAS  PubMed  Google Scholar 

  24. Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39(10):1291–1304

    Article  CAS  PubMed  Google Scholar 

  25. Cindric M, Cipak A, Zapletal E, Jaganjac M, Milkovic L, Waeg G, Stolc S, Zarkovic N et al (2013) Stobadine attenuates impairment of an intestinal barrier model caused by 4-hydroxynonenal. Toxicol In Vitro 27(1):426–432

    Article  CAS  PubMed  Google Scholar 

  26. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moon CY, Ku CR, Cho YH, Lee EJ (2012) Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis. Biochem Biophys Res Commun 423(1):116–121

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Jiang W, Zhu H, Hou J (2012) Antifibrotic effects of protocatechuic aldehyde on experimental liver fibrosis. Pharm Biol 50(4):413–419

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, Jiang WL, Zhang SP, Zhu HB, Hou J (2012) Protocatechuic aldehyde protects against experimental sepsis in vitro and in vivo. Basic Clin Pharmacol Toxicol 110(4):384–389

    Article  CAS  PubMed  Google Scholar 

  31. Chang ZQ, Gebru E, Lee SP, Rhee MH, Kim JC, Cheng H, Park SC (2011) In vitro antioxidant and anti-inflammatory activities of protocatechualdehyde isolated from Phellinus gilvus. J Nutr Sci Vitaminol (Tokyo) 57(1):118–122

    Article  CAS  Google Scholar 

  32. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383(3–4):521–536

    CAS  PubMed  Google Scholar 

  33. Pinheiro FF, Fontenele MA, de Sousa NJ, Fonteles AA, da Silva AT, de Araujo RP, Santos DCM, de Souza CM et al (2014) Caffeic acid protects mice from memory deficits induced by focal cerebral ischemia. Behav Pharmacol 25(7):637–647

    Article  Google Scholar 

  34. Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS et al (2011) Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 14(1):137–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029

    Article  CAS  PubMed  Google Scholar 

  36. Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Dore S (2007) Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience 147(1):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T et al (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35(3):238–245

    Article  CAS  PubMed  Google Scholar 

  38. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A 98(6):3410–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takagi T, Kitashoji A, Iwawaki T, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H (2014) Temporal activation of Nrf2 in the penumbra and Nrf2 activator-mediated neuroprotection in ischemia-reperfusion injury. Free Radic Biol Med 72:124–133

    Article  CAS  PubMed  Google Scholar 

  40. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  41. Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64(5–6):765–770

    Article  CAS  PubMed  Google Scholar 

  42. Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q (2014) Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int 75:79–88

    Article  CAS  PubMed  Google Scholar 

  43. Jin M, Kumar A, Kumar S (2012) Ethanol-mediated regulation of cytochrome P450 2A6 expression in monocytes: role of oxidative stress-mediated PKC/MEK/Nrf2 pathway. PLoS One 7(4):e35505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buelna-Chontal M, Guevara-Chavez JG, Silva-Palacios A, Medina-Campos ON, Pedraza-Chaverri J, Zazueta C (2014) Nrf2-regulated antioxidant response is activated by protein kinase C in postconditioned rat hearts. Free Radic Biol Med 74:145–156

    Article  CAS  PubMed  Google Scholar 

  45. Espada S, Rojo AI, Salinas M, Cuadrado A (2009) The muscarinic M1 receptor activates Nrf2 through a signaling cascade that involves protein kinase C and inhibition of GSK-3beta: connecting neurotransmission with neuroprotection. J Neurochem 110(3):1107–1119

    Article  CAS  PubMed  Google Scholar 

  46. Mylroie H, Dumont O, Bauer A, Thornton CC, Mackey J, Calay D, Hamdulay SS, Choo JR et al (2015) PKCepsilon-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res 106(3):509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bar-Am O, Amit T, Youdim MB (2007) Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 103(2):500–508

    Article  CAS  PubMed  Google Scholar 

  48. Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA (2008) Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci 28(16):4172–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quesada A, Ogi J, Schultz J, Handforth A (2011) C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase C/Nrf2 pathway. J Neurosci Res 89(3):394–405

    Article  CAS  PubMed  Google Scholar 

  50. Di-Capua N, Sperling O, Zoref-Shani E (2003) Protein kinase C-epsilon is involved in the adenosine-activated signal transduction pathway conferring protection against ischemia-reperfusion injury in primary rat neuronal cultures. J Neurochem 84(2):409–412

    Article  CAS  PubMed  Google Scholar 

  51. Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2004) Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 24(6):636–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This present study was supported by grants from the National Natural Science Foundation of China (No. 81403134). We thank our colleagues from the Department of Neurology for their constructive advices on our experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miaomaio Xi or Aidong Wen.

Ethics declarations

Conflict of Interest

No competing interests.

Ethics Approval

Experimental protocols were approved by the Ethics Committee for Animal Experimentation of the Fourth Military Medical University (Xi’an, China).

Additional information

Chao Guo, Shiquan Wang, Jialin Duan and Na Jia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Wang, S., Duan, J. et al. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway. Mol Neurobiol 54, 833–845 (2017). https://doi.org/10.1007/s12035-016-9690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9690-z

Keywords

Navigation