Skip to main content

Advertisement

Log in

Neuronal Ryanodine Receptors in Development and Aging

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ryanodine receptors (RyRs) are intracellular calcium-release channels found on the endoplasmic reticulum of all cells. All three RyR isoforms, RyR1–3, are expressed in the brain, with RyR2 predominating. RyRs are localized within the soma, axons, dendritic spines, and presynaptic terminals of neurons. RyRs are highly expressed in the cerebellum, hippocampus, olfactory region, basal ganglia, and cerebral cortex. During the physiological processes of development and aging, the intracellular calcium homeostasis is largely regulated by RyRs. In this review, we discussed the potential mechanisms underlying development- and age-related RyR regulation. Dysregulation of RyRs can cause imbalance of intracellular calcium levels, leading to cellular vulnerability, impairment of synaptic neuronal function, and eventually neuronal death. Regulation of RyRs may play an essential role in cellular senescence associated with aging, and thus may be pharmacological targets for slowing down aberrant processes and neurodegenerative diseases such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Del PD, Checler F, Chami M (2014) Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 9:21

    Article  Google Scholar 

  2. Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F (2007) Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 1097:265–277

    Article  CAS  PubMed  Google Scholar 

  3. Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca 2 + -release channels. Cell Calcium 32:307–319

    Article  CAS  PubMed  Google Scholar 

  4. Wu HH, Brennan C, Ashworth R: Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development. BMC Res Notes 2011, 4: 541.

  5. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    Article  CAS  PubMed  Google Scholar 

  6. Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722

    Article  CAS  PubMed  Google Scholar 

  7. Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13:R425

    Article  CAS  PubMed  Google Scholar 

  8. Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM et al (2014) FK506-binding protein 1b/12.6: A key to aging-related hippocampal Ca 2+ dysregulation? Eur J Pharmacol 739:74–82

    Article  CAS  PubMed  Google Scholar 

  9. Baker KD, Edwards TM, Rickard NS (2010) A ryanodine receptor agonist promotes the consolidation of long-term memory in young chicks. Behav Brain Res 206:143–146

    Article  CAS  PubMed  Google Scholar 

  10. Fitzjohn SM, Collingridge GL: Calcium stores and synaptic plasticity [review] [55 refs]. Cell Calcium 2002, 32: 405–411.

  11. Galeotti N, Quattrone A, Vivoli E, Norcini M, Bartolini A, Ghelardini C (2008) Different involvement of type 1, 2, and 3 ryanodine receptors in memory processes. Learn Mem 15:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao W, Meiri N, Xu H, Cavallaro S, Quattrone A, Zhang L et al (2000) Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus. FASEB J 14:290–300

    Article  CAS  PubMed  Google Scholar 

  13. Hertle DN, Yeckel MF (2007) Distribution of inositol-1, 4, 5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. George CH, Rogers SA, Bertrand BM, Tunwell RE, Thomas NL, Steele DS et al (2007) Alternative splicing of ryanodine receptors modulates cardiomyocyte Ca2+ signaling and susceptibility to apoptosis. Circ Res 100:874–883

    Article  CAS  PubMed  Google Scholar 

  15. Jiang D, Xiao B, Li X, Chen SR (2003) Smooth muscle tissues express a major dominant negative splice variant of the type 3 Ca2+ release channel (ryanodine receptor). J Biol Chem 278:4763–4769

    Article  CAS  PubMed  Google Scholar 

  16. Leeb T, Brenig B (1998) cDNA cloning and sequencing of the human ryanodine receptor type 3 (RYR3) reveals a novel alternative splice site in the RYR3 gene. FEBS Lett 423:367–370

    Article  CAS  PubMed  Google Scholar 

  17. Marziali G, Rossi D, Giannini G, Charlesworth A, Sorrentino V (1996) cDNA cloning reveals a tissue specific expression of alternatively spliced transcripts of the ryanodine receptor type 3 (RyR3) calcium release channel. FEBS Lett 394:76–82

    Article  CAS  PubMed  Google Scholar 

  18. Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P (2008) The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 44:507–518

    Article  CAS  PubMed  Google Scholar 

  19. Chen SR, Zhang L, MacLennan DH (1993) Antibodies as probes for Ca2+ activation sites in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 268:13414–13421

    CAS  PubMed  Google Scholar 

  20. Chen SR, Zhang L, MacLennan DH (1992) Characterization of a Ca2+ binding and regulatory site in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 267:23318–23326

    CAS  PubMed  Google Scholar 

  21. Conti A, Gorza L, Sorrentino V (1996) Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem J 316(Pt 1):19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ottini L, Marziali G, Conti A, Charlesworth A, Sorrentino V (1996) Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochem J 315(Pt 1):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469

    Article  CAS  PubMed  Google Scholar 

  24. Furuichi T, Furutama D, Hakamata Y, Nakai J, Takeshima H, Mikoshiba K (1994) Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci 14:4794–4805

    CAS  PubMed  Google Scholar 

  25. Baker KD, Edwards TM, Rickard NS (2013) The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 37:1211–1239

    Article  CAS  PubMed  Google Scholar 

  26. Takei K, Stukenbrok H, Metcalf A, Mignery GA, Sudhof TC, Volpe P et al (1992) Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin. J Neurosci 12:489–505

    CAS  PubMed  Google Scholar 

  27. Mori F, Fukaya M, Abe H, Wakabayashi K, Watanabe M (2000) Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci Lett 285:57–60

    Article  CAS  PubMed  Google Scholar 

  28. Giannini G, Sorrentino V (1995) Molecular structure and tissue distribution of ryanodine receptors calcium channels. Med Res Rev 15:313–323

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi S, Kuwajima G, Mikoshiba K (1992) Immunohistochemical localization of ryanodine receptors in mouse central nervous system. Neurosci Res 15:130–142

    Article  CAS  PubMed  Google Scholar 

  30. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235

    Article  CAS  PubMed  Google Scholar 

  31. Murayama T, Ogawa Y (1996) Properties of Ryr3 ryanodine receptor isoform in mammalian brain. J Biol Chem 271:5079–5084

    Article  CAS  PubMed  Google Scholar 

  32. Faure AV, Grunwald D, Moutin MJ, Hilly M, Mauger JP, Marty I et al (2001) Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 14:1613–1622

    Article  CAS  PubMed  Google Scholar 

  33. Kuwajima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K (1992) Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron 9:1133–1142

    Article  CAS  PubMed  Google Scholar 

  34. Martin C, Chapman KE, Seckl JR, Ashley RH (1998) Partial cloning and differential expression of ryanodine receptor/calcium-release channel genes in human tissues including the hippocampus and cerebellum. Neuroscience 85:205–216

    Article  CAS  PubMed  Google Scholar 

  35. Stein MB, Padua RA, Nagy JI, Geiger JD (1992) High affinity [3 H]ryanodine binding sites in postmortem human brain: regional distribution and effects of calcium, magnesium and caffeine. Brain Res 585:349–354

    Article  CAS  PubMed  Google Scholar 

  36. Nakashima Y, Nishimura S, Maeda A, Barsoumian EL, Hakamata Y, Nakai J et al (1997) Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett 417:157–162

    Article  CAS  PubMed  Google Scholar 

  37. Martini A, Battaini F, Govoni S, Volpe P (1994) Inositol 1, 4, 5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Neurobiol Aging 15:203–206

    Article  CAS  PubMed  Google Scholar 

  38. Rosemblit N, Moschella MC, Ondriasa E, Gutstein DE, Ondrias K, Marks AR (1999) Intracellular calcium release channel expression during embryogenesis. Dev Biol 206:163–177

    Article  CAS  PubMed  Google Scholar 

  39. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508:199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266

    Article  PubMed  Google Scholar 

  41. Allen Institute for Brain Science (2010) Allen Brain Atlas. http://www.brainspan.org/rnaseq/searches?exact_match=false&search_term=RyR&search_type=gene

  42. Milosevic A, Zecevic N (1998) Developmental changes in human cerebellum: expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J Comp Neurol 396:442–460

    Article  CAS  PubMed  Google Scholar 

  43. Kurokawa K, Mizuno K, Shibasaki M, Ohkuma S (2011) Dopamine D1 receptors participate in cocaine-induced place preference via regulation of ryanodine receptor expression. J Pharmacol Sci 117:87–97

    Article  CAS  PubMed  Google Scholar 

  44. Vanterpool CK, Vanterpool EA, Pearce WJ, Buchholz JN: Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia. J Appl Physiol (1985) 2006, 101: 392–400

  45. Clodfelter GV, Porter NM, Landfield PW, Thibault O (2002) Sustained Ca 2+ −induced Ca 2+ −release underlies the post-glutamate lethal Ca2+ plateau in older cultured hippocampal neurons. Eur J Pharmacol 447:189–200

    Article  CAS  PubMed  Google Scholar 

  46. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  47. Berridge MJ, Bootman MD, Lipp P (1998) Calcium-a life and death signal. Nature 395:645–648

    Article  CAS  PubMed  Google Scholar 

  48. Sutherland DJ, Pujic Z, Goodhill GJ (2014) Calcium signaling in axon guidance. Trends Neurosci 37:424–432

    Article  CAS  PubMed  Google Scholar 

  49. Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M (2000) Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403:93–98

    Article  CAS  PubMed  Google Scholar 

  50. Tang F, Kalil K (2005) Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways. J Neurosci 25:6702–6715

    Article  CAS  PubMed  Google Scholar 

  51. Low VF, Fiorini Z, Fisher L, Jasoni CL (2012) Netrin-1 stimulates developing GnRH neurons to extend neurites to the median eminence in a calcium-dependent manner. PLoS One 7:e46999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R et al (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15:38–52

    Article  CAS  PubMed  Google Scholar 

  53. Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    Article  PubMed  Google Scholar 

  54. Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE et al (2013) Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep 5:738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keown CL, Shih P, Nair A, Peterson N, Mulvey ME, Muller RA (2013) Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep 5:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berridge MJ (2014) Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 357:477–492

    Article  CAS  PubMed  Google Scholar 

  58. Cole MW, Anticevic A, Repovs G, Barch D (2011) Variable global dysconnectivity and individual differences in schizophrenia. Biol Psychiatry 70:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H et al (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30:638–649

    Article  CAS  PubMed  Google Scholar 

  60. Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K et al (2009) Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 3:3

    PubMed  PubMed Central  Google Scholar 

  61. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104:20090–20095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE et al (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384

    Article  CAS  PubMed  Google Scholar 

  63. Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H et al (2015) A dopamine receptor contributes to paraquat-induced neurotoxicity in drosophila. Hum Mol Genet 24:197–212

    Article  CAS  PubMed  Google Scholar 

  65. Kelliher M, Fastbom J, Cowburn RF, Bonkale W, Ohm TG, Ravid R et al (1999) Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and β-amyloid pathologies. Neuroscience 92:499–513

    Article  CAS  PubMed  Google Scholar 

  66. Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26:5180–5189

    Article  CAS  PubMed  Google Scholar 

  67. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94:1711–1718

    Article  CAS  PubMed  Google Scholar 

  68. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989

    Article  CAS  PubMed  Google Scholar 

  69. Guerreiro S, Florence C, Rousseau E, Hamadat S, Hirsch EC, Michel PP (2015) The sleep-modulating peptide orexin-B protects midbrain dopamine neurons from degeneration, alone or in cooperation with nicotine. Mol Pharmacol 87:525–532

    Article  PubMed  Google Scholar 

  70. Singh P, Sharma B (2016) Reversal in cognition impairments, cholinergic dysfunction, and cerebral oxidative stress through the modulation of ryanodine receptors (RyRs) and Cysteinyl leukotriene-1 (CysLT1) receptors. Curr Neurovasc Res 13:10–21

    Article  CAS  PubMed  Google Scholar 

  71. Bultynck G, De SP, Rossi D, Callewaert G, Missiaen L, Sorrentino V et al (2001) Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1, 4, 5-trisphosphate receptor. Biochem J 354:413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341:758–760

    Article  CAS  PubMed  Google Scholar 

  73. Yuan Q, Chen Z, Santulli G, Gu L, Yang ZG, Yuan ZQ et al (2014) Functional role of Calstabin2 in age-related cardiac alterations. Sci Rep 4:7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gant JC, Chen KC, Norris CM, Kadish I, Thibault O, Blalock EM et al (2011) Disrupting function of FK506-binding protein 1b/12.6 induces the Ca(2)+ –dysregulation aging phenotype in hippocampal neurons. J Neurosci 31:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lehnart SE, Huang F, Marx SO, Marks AR (2003) Immunophilins and coupled gating of ryanodine receptors. Curr Top Med Chem 3:1383–1391

    Article  CAS  PubMed  Google Scholar 

  76. Gant JC, Chen KC, Kadish I, Blalock EM, Thibault O, Porter NM et al (2015) Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. J Neurosci 35:10878–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki M, Nagai Y, Wada K, Koike T (2012) Calcium leak through ryanodine receptor is involved in neuronal death induced by mutant huntingtin. Biochem Biophys Res Commun 429:18–23

    Article  CAS  PubMed  Google Scholar 

  78. Bratic A, Larsson NG (2013) The role of mitochondria in aging. [review]. J Clin Investig 123:951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paula-Lima AC, Hidalgo C (2013) Amyloid β-peptide oligomers, ryanodine receptor-mediated Ca(2+) release, and Wnt-5a/Ca(2+) signaling: opposing roles in neuronal mitochondrial dynamics? Front Cell Neurosci 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  80. Demaurex N, Scorrano L (2009) Reactive oxygen species are NOXious for neurons. Nat Neurosci 12:819–820

    Article  CAS  PubMed  Google Scholar 

  81. Hidalgo C, Donoso P, Carrasco MA (2005) The ryanodine receptors Ca2+ release channels: cellular redox sensors? IUBMB Life 57:315–322

    Article  CAS  PubMed  Google Scholar 

  82. Bodhinathan K, Kumar A, Foster TC (2010) Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: role for ryanodine receptor mediated calcium signaling. J Neurophysiol 104:2586–2593

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  84. Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, Nunez E, Castellano J, Loureiro M et al (2014) Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis 5:e1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wilson C, Munoz-Palma E, Henriquez DR, Palmisano I, Nunez MT, Di GS et al (2016) A feed-forward mechanism involving the NOX complex and RyR-mediated Ca2+ release during axonal specification. J Neurosci 36:11107–11119

    Article  CAS  PubMed  Google Scholar 

  86. Mattson MP (2010) ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 3:e10

    Article  Google Scholar 

  87. Payne AJ, Gerdes BC, Naumchuk Y, McCalley AE, Kaja S, Koulen P (2013) Presenilins regulate the cellular activity of ryanodine receptors differentially through isotype-specific N-terminal cysteines. Exp Neurol 250:143–150

    Article  CAS  PubMed  Google Scholar 

  88. Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200

    Article  CAS  PubMed  Google Scholar 

  89. Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  CAS  PubMed  Google Scholar 

  90. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. [Review] [145 refs] Nat Rev Neurosci 3:862–872

    Article  CAS  PubMed  Google Scholar 

  91. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  CAS  PubMed  Google Scholar 

  92. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J et al (1996) Increased amyloid-β42 (43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    Article  CAS  PubMed  Google Scholar 

  93. Sato N, Imaizumi K, Manabe T, Taniguchi M, Hitomi J, Katayama T et al (2001) Increased production of β-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2. J Biol Chem 276:2108–2114

    Article  CAS  PubMed  Google Scholar 

  94. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  CAS  PubMed  Google Scholar 

  95. Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S et al (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci U S A 94:2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo Q, Sebastian L, Sopher BL, Miller MW, Glazner GW, Ware CB et al (1999) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 96:4125–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wahlster L, Arimon M, Nasser-Ghodsi N, Post KL, Serrano-Pozo A, Uemura K et al (2013) Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease. Acta Neuropathol 125:187–199

    Article  CAS  PubMed  Google Scholar 

  98. Berezovska O, Lleo A, Herl LD, Frosch MP, Stern EA, Bacskai BJ et al (2005) Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 25:3009–3017

    Article  CAS  PubMed  Google Scholar 

  99. Wu B, Yamaguchi H, Lai FA, Shen J (2013) Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A 110:15091–15096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by an operating grant to ZPF from the National Sciences and Engineering Research Council of Canada (NSERC-RGPIN-2014-06471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Feng.

Ethics declarations

Competing Interests

The authors declare that they have no competing interest.

Additional information

Nawaf Abu-Omar and Jogita Das contribute equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Omar, N., Das, J., Szeto, V. et al. Neuronal Ryanodine Receptors in Development and Aging. Mol Neurobiol 55, 1183–1192 (2018). https://doi.org/10.1007/s12035-016-0375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0375-4

Keywords

Navigation