Skip to main content

Advertisement

Log in

Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and frequently evolving drug resistance. Although there is growing consensus that noncoding ribonucleic acids (ncRNAs) are modulators of TLE, the knowledge about the deoxyribonucleic acid (DNA) methylation patterns of ncRNAs in TLE remains limited. In the current study, we constructed DNA methylation profiles from 30 TLE patients and 30 healthy controls for ncRNAs, primarily focusing on long ncRNAs (lncRNAs) and microRNAs (miRNAs), by reannotating data of DNA methylation BeadChip. Statistics analyses have revealed a global hypermethylation pattern in miRNA and lncRNA gene in TLE patients. Bioinformatic analyses have found aberrantly methylated miRNAs and lncRNAs are related to ion channel activity, drug metabolism, mitogen-activated protein kinase (MAPK) signaling pathway, and neurotrophin signaling pathway. Aberrantly methylated ncRNA and pathway target might be involved in TLE development and progression. The methylated and demethylated ncRNAs identified in this study provide novel insights for developing TLE biomarkers and potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. (1993) Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis, International League Against Epilepsy. Epilepsia 34:592–596

  2. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl 7):2–26

    Article  CAS  PubMed  Google Scholar 

  3. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349:1257–1266

    Article  PubMed  Google Scholar 

  4. Tellez-Zenteno JF, Hernandez-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853

    PubMed  Google Scholar 

  5. Loscher W, Luna-Tortos C, Romermann K, Fedrowitz M (2011) Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des 17:2808–2828

    Article  PubMed  Google Scholar 

  6. Blumcke I, Coras R, Miyata H, Ozkara C (2012) Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol 22:402–411

    Article  PubMed  Google Scholar 

  7. Kobow K, Auvin S, Jensen F, Loscher W, Mody I, Potschka H et al (2012) Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 53:1868–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobow K, El-Osta A, Blumcke I (2013) The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia 54(Suppl 2):41–47

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  10. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alsharafi WA, Xiao B, Abuhamed MM, Luo Z (2015) miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229

    Article  CAS  PubMed  Google Scholar 

  13. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  15. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80

    Article  CAS  PubMed  Google Scholar 

  17. Roberts TC, Morris KV, Wood MJ (2014) The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond Ser B Biol Sci 369(1652):20130507

    Article  Google Scholar 

  18. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF et al (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  20. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Zhang Y, Li S, Lu J, Chen J, Wang Y et al (2015) Genome-wide DNA methylome analysis reveals epigenetically dysregulated non-coding RNAs in human breast cancer. Sci Rep 5:8790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48:R45–R53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller-Delaney SF, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138:616–631

    Article  PubMed  Google Scholar 

  24. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen HW, Mathern G et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077

    Article  CAS  PubMed  Google Scholar 

  25. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  26. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755

    Article  CAS  PubMed  Google Scholar 

  27. Zou Q, Mao Y, Hu L, Wu Y, Ji Z (2014) miRClassify: an advanced web server for miRNA family classification and annotation. Comput Biol Med 45:157–160

    Article  CAS  PubMed  Google Scholar 

  28. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhi H, Ning S, Li X, Li Y, Wu W, Li X (2014) A novel reannotation strategy for dissecting DNA methylation patterns of human long intergenic non-coding RNAs in cancers. Nucleic Acids Res 42:8258–8270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N et al (2013) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32:2927–2936

    Article  CAS  PubMed  Google Scholar 

  33. Morita S, Takahashi RU, Yamashita R, Toyoda A, Horii T, Kimura M et al (2012) Genome-wide analysis of DNA methylation and expression of microRNAs in breast cancer cells. Int J Mol Sci 13:8259–8272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho S, Jang I, Jun Y, Yoon S, Ko M, Kwon Y et al (2013) MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 41:D252–D257

    Article  CAS  PubMed  Google Scholar 

  35. Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  36. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang Q, Ma R, Wang J, Wu X, Jin S, Peng J et al (2015) LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. BMC Genomics 16(Suppl 3):S2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li JH, Liu S, Zhou H, LH Q, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  CAS  PubMed  Google Scholar 

  41. Kobow K, Kaspi A, Harikrishnan KN, Kiese K, Ziemann M, Khurana I et al (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 126:741–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kobow K, Blumcke I (2014) Epigenetic mechanisms in epilepsy. Prog Brain Res 213:279–316

    Article  PubMed  Google Scholar 

  43. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  44. Takeda K, Ichijo H (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7:1099–1111

    Article  CAS  PubMed  Google Scholar 

  45. Correa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012:649079

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shao Y, Wang C, Hong Z, Chen Y (2016) Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats. J Neurochem 136:1096–1105

    Article  CAS  PubMed  Google Scholar 

  47. Gambardella A, Labate A (2014) The role of calcium channel mutations in human epilepsy. Prog Brain Res 213:87–96

    Article  PubMed  Google Scholar 

  48. Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R et al (2004) Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 127:2682–2692

    Article  PubMed  Google Scholar 

  49. Bienvenu T, Diebold B, Chelly J, Isidor B (2013) Refining the phenotype associated with MEF2C point mutations. Neurogenetics 14:71–75

    Article  PubMed  Google Scholar 

  50. Nowakowska BA, Obersztyn E, Szymanska K, Bekiesinska-Figatowska M, Xia Z, Ricks CB et al (2010) Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C. Am J Med Genet B Neuropsychiatr Genet 153B:1042–1051

    CAS  PubMed  Google Scholar 

  51. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  52. Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Yu JT, Tan L, Tian Y, Ma J, Tan CC et al (2015) Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep 5:9522

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  55. Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN et al (2012) MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci 13:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu W, Rong Y, Baudry M, Schreiber SS (1999) Status epilepticus induces p53 sequence-specific DNA binding in mature rat brain. Brain Res Mol Brain Res 63:248–253

    Article  CAS  PubMed  Google Scholar 

  57. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16:1337–1345

    CAS  PubMed  Google Scholar 

  58. Peng W, Si S, Zhang Q, Li C, Zhao F, Wang F et al (2015) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res 34:79

    Article  PubMed  PubMed Central  Google Scholar 

  59. Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–1329

    Article  PubMed  Google Scholar 

  60. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010:479364

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ekstrom L, Skilving I, Ovesjo ML, Aklillu E, Nylen H, Rane A et al (2015) miRNA-27b levels are associated with CYP3A activity in vitro and in vivo. Pharmacol Res Perspect 3:e192

    Article  Google Scholar 

  62. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K et al (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N et al (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 34:1212–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamphuis WW, Derada TC, Reijerkerk A, Romero IA, de Vries HE (2015) The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol Disord Drug Targets 14:157–167

    Article  CAS  PubMed  Google Scholar 

  65. van Vliet EA, Da CAS, Redeker S, van Schaik R, Aronica E, Gorter JA (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534

    Article  PubMed  Google Scholar 

  66. van Vliet EA, Aronica E, Gorter JA (2014) Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 277:455–473

    Article  PubMed  Google Scholar 

  67. Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL, Kreipe H et al (2012) Quantitative cross-validation and content analysis of the 450 k DNA methylation array from Illumina, Inc. BMC Res Notes 5:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NNSFC), grant no. 81401078 to H.Y.L and no. 81371435 to B.X.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangwei Ning, Lihua Wang or Bo Xiao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Wenbiao Xiao and Yuze Cao contributed equally to this work.

Electronic Supplementary Material

.

Fig. S1

Detail information about clinical subgroups of TLE. a Bar graphs illustrating the distribution of disease onset age and disease course for 30 TLE patients. Red bars represent disease course and blue bars for disease onset age. Red serial number represents drug-resistant patient, blue serial number for drug-responsive patient. b Pie graphs illustrating the rate distribution of detail antiepileptic drug for 30 TLE patients. c Pie graphs illustrating the rate distribution of monotherapy and combination drug therapy for 30 TLE patients. (GIF 177 kb)

.

High resolution image (TIFF 24263 kb)

.

Fig. S2

A depiction of MAPK pathway in KEGG database. The KEGG annotated MAPK pathway as significantly enriched for TLE. Proteins or complexes targeted by differentially methylated miRNAs or lncRNAs are indicated in red character. Two important genes (CACN and MEF2C) are target genes and meanwhile are reported implicated in epilepsy or seizure phenotype in PubMed database and are indicated in red character and yellow background. (GIF 75 kb)

.

High resolution image (TIFF 9632 kb)

.

Table S1

(PDF 90 kb)

.

Table S2

(PDF 40 kb)

.

Table S3

(PDF 14 kb)

.

Table S4

(PDF 14 kb)

.

Table S5

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Cao, Y., Long, H. et al. Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Mol Neurobiol 55, 793–803 (2018). https://doi.org/10.1007/s12035-016-0353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0353-x

Keywords

Navigation