Skip to main content
Log in

Heterogeneity in Synaptogenic Profile of Astrocytes from Different Brain Regions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes, the most abundant glial cells in the central nervous system (CNS), comprise a heterogeneous population of cells. However, how this heterogeneity impacts their function within brain homeostasis and response to injury and disease is still largely unknown. Recently, astrocytes have been recognized as important regulators of synapse formation and maturation. Here, we analyzed the synaptogenic property of astrocytes from different regions of the CNS. The effect of conditioned medium derived from astrocytes (astrocyte-conditioned medium (ACM)) from cerebral cortex, hippocampus, midbrain and cerebellum, in synapse formation, was evaluated. Synapse formation was analyzed by quantification of pre- and postsynaptic proteins, synaptophysin, and postsynaptic density protein 95 (PSD-95). ACM from the four regions increased significantly the number of synaptophysin/PSD-95 puncta on neurons from the same and different brain regions. Differences on astrocytic synaptogenic potential between the regions were observed according to ACM protein concentration. Thus, cerebellar astrocytes have higher synaptogenic effect when ACM is less concentrated. Also, heterotypical co-culture assays revealed that neurons from cerebral cortex and midbrain equally respond to ACM, indicating that differences in synapse effect are unlike to be neuron-autonomous. The expression profile of the synaptogenic molecules secreted by astrocytes from distinct brain regions was analyzed by qPCR. Gene expression of glypicans 4 and 6, hevin, and secreted protein-acidic and rich in cysteine (SPARC) greatly varies between astrocytes from different brain regions. Furthermore, in vivo analysis of hevin protein confirmed that variance. These findings highlight the heterogeneity of astrocytes and suggest that their synaptogenic potential may be different in each brain region, mainly due to distinct gene expression profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468(7321):223–231. doi:10.1038/nature09612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45. doi:10.1007/978-1-61779-452-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaboub LS, Deneen B (2012) Developmental origins of astrocyte heterogeneity: the final frontier of CNS development. Dev Neurosci 34(5):379–388. doi:10.1159/000343723000343723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci Off J Soc Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  Google Scholar 

  5. Garcia-Abreu J, Moura Neto V, Carvalho SL, Cavalcante LA (1995) Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. J Neurosci Res 40(4):471–477. doi:10.1002/jnr.490400406

    Article  CAS  PubMed  Google Scholar 

  6. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci Off J Soc Neurosci 27(25):6607–6619. doi:10.1523/JNEUROSCI.0790-07.2007

    Article  CAS  Google Scholar 

  7. Emsley JG, Macklis JD (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol 2(3):175–186. doi:10.1017/S1740925X06000202

    Article  PubMed  PubMed Central  Google Scholar 

  8. Romao LF, Sousa Vde O, Neto VM, Gomes FC (2008) Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem 106(2):746–756. doi:10.1111/j.1471-4159.2008.05428.x

    Article  CAS  PubMed  Google Scholar 

  9. Heller JP, Rusakov DA (2015) Morphological plasticity of astroglia: understanding synaptic microenvironment. Glia 63(12):2133–2151. doi:10.1002/glia.22821

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    CAS  PubMed  Google Scholar 

  11. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci Off J Soc Neurosci 29(10):3276–3287. doi:10.1523/JNEUROSCI.4707-08.2009

    Article  CAS  Google Scholar 

  12. Panatier A, Vallee J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146(5):785–798. doi:10.1016/j.cell.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  13. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14(10):1276–1284. doi:10.1038/nn.2929

    Article  CAS  PubMed  Google Scholar 

  14. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi:10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  15. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 102(15):5606–5611. doi:10.1073/pnas.0408483102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758. doi:10.1074/jbc.M700290200

    Article  CAS  PubMed  Google Scholar 

  17. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. doi:10.1016/j.cell.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  18. Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, Chakraborty C, Workman G et al (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins hevin and SPARC. Proc Natl Acad Sci U S A 108(32):E440–E449. doi:10.1073/pnas.1104977108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, Barres BA (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486(7403):410–414. doi:10.1038/nature11059

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059. doi:10.1038/nature04671

    Article  CAS  PubMed  Google Scholar 

  21. Gomez-Casati ME, Murtie JC, Rio C, Stankovic K, Liberman MC, Corfas G (2010) Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci U S A 107(39):17005–17010. doi:10.1073/pnas.1008938107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigao P, Stipursky J, Kahn SA et al (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 287(49):41432–41445. doi:10.1074/jbc.M112.380824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williams ME, de Wit J, Ghosh A (2010) Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68(1):9–18. doi:10.1016/j.neuron.2010.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinmetz CC, Buard I, Claudepierre T, Nagler K, Pfrieger FW (2006) Regional variations in the glial influence on synapse development in the mouse CNS. J Physiol 577(Pt 1):249–261. doi:10.1113/jphysiol.2006.117358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291(5504):657–661. doi:10.1126/science.291.5504.657

    Article  CAS  PubMed  Google Scholar 

  26. Ullian EM, Harris BT, Wu A, Chan JR, Barres BA (2004) Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25(2):241–251. doi:10.1016/j.mcn.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  27. McKellar CE, Shatz CJ (2009) Synaptogenesis in purified cortical subplate neurons. Cereb Cortex 19(8):1723–1737. doi:10.1093/cercor/bhn194

    Article  PubMed  Google Scholar 

  28. Spacek J (1985) Three-dimensional analysis of dendritic spines. III Glial sheath Anatomy and embryology 171(2):245–252

    Article  CAS  PubMed  Google Scholar 

  29. Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci Off J Soc Neurosci 19(16):6897–6906

    CAS  Google Scholar 

  30. Araujo AP, Diniz LP, Eller CM, de Matos BG, Martinez R, Gomes FC (2016) Effects of transforming growth factor beta 1 in cerebellar development: role in synapse formation. Front Cell Neurosci 10:104. doi:10.3389/fncel.2016.00104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77(9):699–706

    Article  CAS  PubMed  Google Scholar 

  33. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362. doi:10.1126/science.1222381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diniz LP, Tortelli V, Garcia MN, Araujo AP, Melo HM, Silva GS, Felice FG, Alves-Leon SV et al (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia 62(12):1917–1931. doi:10.1002/glia.22713

    Article  PubMed  Google Scholar 

  35. Yeh TH, Lee DY, Gianino SM, Gutmann DH (2009) Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57(11):1239–1249. doi:10.1002/glia.20845

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762. doi:10.1016/j.cell.2008.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bachoo RM, Kim RS, Ligon KL, Maher EA, Brennan C, Billings N, Chan S, Li C et al (2004) Molecular diversity of astrocytes with implications for neurological disorders. Proc Natl Acad Sci U S A 101(22):8384–8389. doi:10.1073/pnas.0402140101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, et al. (2015) Astrocytes refine cortical connectivity at dendritic spines. Elife 4. doi:10.7554/eLife.04047

  39. Sullivan MM, Sage EH (2004) Hevin/SC1, a matricellular glycoprotein and potential tumor-suppressor of the SPARC/BM-40/Osteonectin family. Int J Biochem Cell Biol 36(6):991–996. doi:10.1016/j.biocel.2004.01.017

    Article  CAS  PubMed  Google Scholar 

  40. Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC et al (2016) Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via hevin. Cell 164(1–2):183–196. doi:10.1016/j.cell.2015.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594. doi:10.1016/j.conb.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  42. Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45(2–3):191–202. doi:10.1016/j.neuint.2003.08.015

    Article  CAS  PubMed  Google Scholar 

  43. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 22(2):73–86. doi:10.1016/j.ijdevneu.2003.12.008

    Article  Google Scholar 

  44. Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 15(7):1270–1272

    Article  CAS  Google Scholar 

  45. Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiological research/Academia Scientiarum Bohemoslovaca 47(5):365–375

    CAS  Google Scholar 

  46. Seifert G, Steinhauser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7(9):1872–1881

    Article  CAS  PubMed  Google Scholar 

  47. Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, Chan JR, Baranzini SE et al (2014) Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509(7499):189–194. doi:10.1038/nature13161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marcelo Meloni and Grasiela Ventura for technical assistance. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ministério da Saúde, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Carvalho Alcantara Gomes.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Fig S1

ACM synaptogenic property has a protein nature. Neuronal cultures with 12 DIV from cerebral cortex were treated for 3 h with DMEM/F12 (control), with cortex ACM and with boiled cortex ACM (boiled for 5 min). Excitatory synapse formation was analyzed by quantification of synaptic proteins puncta numbers. (n = 3). ***P < 0.001. (GIF 17 kb)

High Resolution Image (TIFF 3369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buosi, A.S., Matias, I., Araujo, A.P.B. et al. Heterogeneity in Synaptogenic Profile of Astrocytes from Different Brain Regions. Mol Neurobiol 55, 751–762 (2018). https://doi.org/10.1007/s12035-016-0343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0343-z

Keywords

Navigation