Skip to main content

Advertisement

Log in

TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-кB Translocation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemia contributes significantly to morbidity and mortality associated with many common neurological diseases. Calcium overload is an important mechanism of cerebral ischemia and reperfusion (I/R) injury. Despite decades of intense research, an effective beneficial treatment of stroke remains limited; few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a “neurocentric” view has dominated research in this field. Evidence is now accumulating that glial cells, especially astrocytes, play an important role in the pathophysiology of cerebral ischemia. Here, we show that transient receptor potential (TRP)C3/6/7 knockout (KO) mice subjected to an I/R procedure demonstrate ameliorated brain injury (infract size), compared to wild-type (WT) control animals. This is accompanied by reduction of NF-кB phosphorylation and an increase in protein kinase B (AKT) phosphorylation in I/R-injured brain tissues in TRPC3/6/7 KO mice. Also, the expression of pro-apoptotic protein Bcl-2 associated X (Bax) is down-regulated and that of anti-apoptotic protein Bcl-2 is upregulated in TRPC3/6/7−/− mice. Astrocytes isolated from TRPC3/6/7 KO mice and subjected to oxygen/glucose deprivation and subsequent reoxygenation (OGD-R, mimicking in vivo I/R injury) also exhibit enhanced Bcl-2 expression, reduced Bax expression, enhanced AKT phosphorylation, and reduced NF-кB phosphorylation. Furthermore, apoptotic rates of TRPC3/6/7 KO astrocytes cultured in OGD-R conditions were reduced significantly compared to WT control. These findings suggest TRPC3/6/7 channels play a detrimental role in brain I/R injury. Deletion of these channels can interfere with the activation of NF-кB (pro-apoptotic), promote activation of AKT (anti-apoptotic), and ultimately, ameliorate brain damage via inhibition of astrocyte apoptosis after cerebral ischemia/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, Milne GL, Hubbard J et al (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the biomarker evaluation for antioxidant therapies in stroke (BEAT-stroke) study. Stroke 39(1):100–104. doi:10.1161/STROKEAHA.107.488189

    Article  CAS  PubMed  Google Scholar 

  2. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397. doi:10.1016/S0166-2236(99)01401-0

  3. Mergenthaler P, Dirnagl U, Meisel A (2004) Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 19(3–4):151–167

    Article  CAS  PubMed  Google Scholar 

  4. PH C (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14. doi:10.1097/00004647-200101000-00002

    Article  Google Scholar 

  5. Stork CJ, Li YV (2006) Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 26(41):10430–10437. doi:10.1523/JNEUROSCI.1588-06.2006

    Article  CAS  PubMed  Google Scholar 

  6. Xiong XY, Wang J, Qian ZM, Yang QW (2014) Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res 5(4):429–441. doi:10.1007/s12975-013-0317-7

    Article  CAS  PubMed  Google Scholar 

  7. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5(1):17–27. doi:10.1007/s12975-013-0314-x

    Article  CAS  PubMed  Google Scholar 

  8. Chen D, Yu SP, Wei L (2014) Ion channels in regulation of neuronal regenerative activities. Transl Stroke Res 5(1):156–162. doi:10.1007/s12975-013-0320-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4(2):193–205. doi:10.2174/1566524043479185

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27(16):4253–4260. doi:10.1523/JNEUROSCI.0211-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG (2010) Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 58(9):1042–1049. doi:10.1002/glia.20985

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M (2003) Astrocytes and stroke: networking for survival? Neurochem Res 28(2):293–305

    Article  CAS  PubMed  Google Scholar 

  13. Zhan X, Ander BP, Liao IH, Hansen JE, Kim C, Clements D, Weisbart RH, Nishimura RN et al (2010) Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke 41(3):538–543. doi:10.1161/STROKEAHA.109.572537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol 49:395–426. doi:10.1146/annurev.pharmtox.48.113006.094928

    Article  CAS  PubMed  Google Scholar 

  15. Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79(1):98–109. doi:10.1046/j.1471-4159.2001.00539.x

    Article  CAS  PubMed  Google Scholar 

  16. Grimaldi M, Maratos M, Verma A (2003) Transient receptor potential channel activation causes a novel form of [Ca 2+]I oscillations and is not involved in capacitative Ca 2+ entry in glial cells. J Neurosci. 23(11):4737–4745. doi:23/11/4737

  17. Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564(Pt 3):737–749. doi:10.1113/jphysiol.2005.085035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirakawa H, Sakimoto S, Nakao K, Sugishita A, Konno M, Iida S, Kusano A, Hashimoto E et al (2010) Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 30(39):13116–13129. doi:10.1523/JNEUROSCI.1890-10.2010

    Article  CAS  PubMed  Google Scholar 

  19. Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 293(3):1103–1111. doi:10.1152/ajpcell.00249.2007.-Many

    Article  Google Scholar 

  20. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A et al (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398. doi:10.1016/j.neuron.2008.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E et al (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25(16):6980–6989. doi:10.1128/MCB.25.16.6980-6989.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 33(5):856–867. doi:10.1111/j.1460-9568.2010.07583.x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

  24. Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 114(Pt20):3717–3725

    CAS  PubMed  Google Scholar 

  25. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51 doi:002217599500072I

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187(1):94–104. doi:10.1016/j.expneurol.2004.01.004

    Article  PubMed  Google Scholar 

  27. Wang C, Pei A, Chen J, Yu H, Sun ML, Liu CF, Xu X (2012) A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. J Neurochem 121(6):1007–1013. doi:10.1111/j.1471-4159.2012.07744.x

    Article  CAS  PubMed  Google Scholar 

  28. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278(31):29031–29040. doi:10.1074/jbc.M302751200

    Article  CAS  PubMed  Google Scholar 

  29. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687. doi:10.1073/pnas.0611692104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900. doi:10.1073/pnas.0712288105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206. doi:10.1073/pnas.0813346106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595–598. doi:10.1016/S0092-8674(02)00670-0

    Article  CAS  PubMed  Google Scholar 

  33. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277(50):48303–48310. doi:10.1074/jbc.M207882200

    Article  CAS  PubMed  Google Scholar 

  34. Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci U S A 93(26):15195–15202

  35. Sergeeva M, Strokin M, Wang H, Ubl JJ, Reiser G (2003) Arachidonic acid in astrocytes blocks Ca2+ oscillations by inhibiting store-operated Ca2+ entry, and causes delayed Ca2+ influx. Cell Calcium 33(4):283–292. doi:10.1016/s0143-4160(03)00011-3

    Article  CAS  PubMed  Google Scholar 

  36. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA et al (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946. doi:10.1016/j.neuron.2008.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barajas M, Andrade A, Hernandez-Hernandez O, Felix R, Arias-Montano JA (2008) Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: evidence for involvement of store-operated channels. J Neurosci Res 86(15):3456–3468. doi:10.1002/jnr.21784

    Article  CAS  PubMed  Google Scholar 

  38. Nakao K, Shirakawa H, Sugishita A, Matsutani I, Niidome T, Nakagawa T, Kaneko S (2008) Ca2+ mobilization mediated by transient receptor potential canonical 3 is associated with thrombin-induced morphological changes in 1321N1 human astrocytoma cells. J Neurosci Res 86(12):2722–2732. doi:10.1002/jnr.21711

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Zhang Y, Asakawa T, Li W, Han S, Li Q, Xiao B, Namba H et al (2015) Neuroprotective effect of neuroserpin in oxygen-glucose deprivation- and reoxygenation-treated rat astrocytes in vitro. PLoS One 10(4):e0123932. doi:10.1371/journal.pone.0123932

    Article  PubMed  PubMed Central  Google Scholar 

  40. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179(S1–2):1–33. doi:10.1016/S0022-510X(00)00386-5

  41. Noshita N, Lewén A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21(12):1442–1450. doi:10.1097/00004647-200112000-00009

    Article  CAS  PubMed  Google Scholar 

  42. Li SY, Yang D, Fu ZJ, Woo T, Wong D, Lo AC (2012) Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiol Dis 45(1):624–632. doi:10.1016/j.nbd.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  43. Paria BC, Malik AB, Kwiatek AM, Rahman A, May MJ, Ghosh S, Tiruppathi C (2003) Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells. J Biol Chem 278(39):37195–37203. doi:10.1074/jbc.M304287200

    Article  CAS  PubMed  Google Scholar 

  44. Paria BC, Bair AM, Xue J, Yu Y, Malik AB, Tiruppathi C (2006) Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem 281(30):20715–20727. doi:10.1074/jbc.M600722200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant 31171087 and Grant 30970662 to YH Liao), and NIH intramural Research Program (Project Z01-ES-101684 to LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Liao.

Ethics declarations

Animals were treated in compliance with the Guide for the Care and Use of Laboratory Animals (National Academy of Science). All animal studies were approved by the Animal Care and Utilization Committee of Huazhong University of Science and Technology.

Additional information

Xiaoyun Chen and Min Lu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lu, M., He, X. et al. TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF-кB Translocation. Mol Neurobiol 54, 7555–7566 (2017). https://doi.org/10.1007/s12035-016-0227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0227-2

Keywords

Navigation