Skip to main content
Log in

Decreased Methylation Level of H3K27me3 Increases Seizure Susceptibility

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic modifications including histone modifications are associated with seizure development and epileptogenesis; however, its underlying mechanism remains to be elucidated. Dipeptidyl peptidase 4 (DPP4) and IL6 are identified as febrile seizure (FS)-related genes using gene microarray analysis in hyperthermia prone (HP) rats. This purpose of the study focused on exploring whether epigenetic modifications marker histone H3 lysine 27 trimethylation (H3K27me3)-regulated DPP4 and IL6 expression further affected seizures development. Herein, we reported broad between-group differences in the global levels of H3K27me3 with increased seizure severity in vivo. Using chromatin immunoprecipitation (ChIP), we identified markedly decreased H3K27me3 enrichment at their promoters of DPP4 and IL6 in vivo. We further showed that hyperthermia significantly decreased protein levels of H3K27me3, increased mRNA levels of DPP4 and IL6 by decreasing H3K27me3 enrichment at their promoters of DPP4 and IL6 in vitro. Importantly, H3K27me3 loss via enhancer of zeste homolog 2 (EZH2) knockdown promoted expression of DPP4 and IL6 via the same mechanism in vitro. EZH2 knockdown also increased neuronal firing frequency in vitro and FS susceptibility in vivo companied with upregulation expression of DPP4 and IL6. Taken together, our study provided the first evidence that hyperthermia-induced decreased of H3K27me3 promoted seizure susceptibility via regulating the expression pattern of DPP4 and IL6. These findings suggested that the methylation level of H3K27me3 might be a key regulator of seizure susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Srinivasan J, Wallace KA, Scheffer IE (2005) Febrile seizures. Aust Fam Physician 34(12):1021–1025

    PubMed  Google Scholar 

  2. Baulac S, Gourfinkel-An I, Nabbout R, Huberfeld G, Serratosa J, Leguern E, Baulac M (2004) Fever, genes, and epilepsy. The Lancet Neurology 3(7):421–430. doi:10.1016/s1474-4422(04)00808-7

    Article  CAS  PubMed  Google Scholar 

  3. Dube CM, Brewster AL, Baram TZ (2009) Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev 31(5):366–371. doi:10.1016/j.braindev.2008.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dube CM, Brewster AL, Richichi C, Zha Q, Baram TZ (2007) Fever, febrile seizures and epilepsy. Trends Neurosci 30(10):490–496. doi:10.1016/j.tins.2007.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis DV (1999) Febrile convulsions and mesial temporal sclerosis. Curr Opin Neurol 12(2):197–201

    Article  CAS  PubMed  Google Scholar 

  6. Patterson KP, Baram TZ, Shinnar S (2014) Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics 11(2):242–250. doi:10.1007/s13311-014-0263-4

    Article  Google Scholar 

  7. Piro RM, Molineris I, Ala U, Di Cunto F (2011) Evaluation of candidate genes from orphan FEB and GEFS+ loci by analysis of human brain gene expression atlases. PLoS One 6(8):e23149. doi:10.1371/journal.pone.0023149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakayama J (2009) Progress in searching for the febrile seizure susceptibility genes. Brain Dev 31(5):359–365. doi:10.1016/j.braindev.2008.11.014

    Article  PubMed  Google Scholar 

  9. Catterall WA (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 54:317–338. doi:10.1146/annurev-pharmtox-011112-140232

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Q, Wang L, Zhang Y, Zhao FH, Luo J, Xiao Z, Chen GJ, Wang XF (2012) Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. Journal of Molecular Neuroscience: MN 46(2):420–426. doi:10.1007/s12031-011-9602-7

    Article  CAS  PubMed  Google Scholar 

  11. Belhedi N, Perroud N, Karege F, Vessaz M, Malafosse A, Salzmann A (2014) Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res 108(1):144–148. doi:10.1016/j.eplepsyres.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Gilby KL, Sydserff S, Patey AM, Thorne V, St-Onge V, Jans J, McIntyre DC (2009) Postnatal epigenetic influences on seizure susceptibility in seizure-prone versus seizure-resistant rat strains. Behav Neurosci 123(2):337–346. doi:10.1037/a0014730

    Article  PubMed  Google Scholar 

  13. Hwang JY, Aromolaran KA, Zukin RS (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 38(1):167–182. doi:10.1038/npp.2012.134

    Article  CAS  Google Scholar 

  14. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. doi:10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412. doi:10.1038/nature05915

    Article  CAS  PubMed  Google Scholar 

  16. Berg AT, Shinnar S (1996) Complex febrile seizures. Epilepsia 37(2):126–133

    Article  CAS  PubMed  Google Scholar 

  17. Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145(7):1049–1061. doi:10.1016/j.cell.2011.05.029

    Article  CAS  PubMed  Google Scholar 

  18. Chao SB, Chen L, Li JC, Ou XH, Huang XJ, Wen S, Sun QY, Gao GL (2012) Defective histone H3K27 trimethylation modification in embryos derived from heated mouse sperm. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 18(3):476–482. doi:10.1017/s1431927612000396

    Article  CAS  Google Scholar 

  19. Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. The Lancet Neurology 8(11):1056–1072. doi:10.1016/s1474-4422(09)70262-5

    Article  CAS  PubMed  Google Scholar 

  20. Kobow K, Blumcke I (2011) The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia 52(Suppl 4):15–19. doi:10.1111/j.1528-1167.2011.03145.x

    Article  CAS  PubMed  Google Scholar 

  21. Akizu N, Estaras C, Guerrero L, Marti E, Martinez-Balbas MA (2010) H3K27me3 regulates BMP activity in developing spinal cord. Development 137(17):2915–2925. doi:10.1242/dev.049395

    Article  CAS  PubMed  Google Scholar 

  22. Henriquez B, Bustos FJ, Aguilar R, Becerra A, Simon F, Montecino M, van Zundert B (2013) Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci 57:130–143. doi:10.1016/j.mcn.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  23. Yang H, Howard M, Dean C (2014) Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Current biology: CB 24(15):1793–1797. doi:10.1016/j.cub.2014.06.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kisliouk T, Meiri N (2009) A critical role for dynamic changes in histone H3 methylation at the Bdnf promoter during postnatal thermotolerance acquisition. Eur J Neurosci 30(10):1909–1922. doi:10.1111/j.1460-9568.2009.06957.x

    Article  PubMed  Google Scholar 

  25. Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, Chang WJ, Chen JN et al (2013) Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Molecular Medicine 5(4):531–547. doi:10.1002/emmm.201201783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW, Herrup K (2013) EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat Neurosci 16(12):1745–1753. doi:10.1038/nn.3564

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Fan Y, Li L, Qiu Y, Wang Z, Han S, Yin J, Liu W et al (2013) Hyperthermia-induced seizures: development of hyperthermia-prone and hyperthermia-resistant rats. Epilepsy Res 106(3):311–317. doi:10.1016/j.eplepsyres.2013.07.002

    Article  PubMed  Google Scholar 

  28. Wang Z, Fan Y, Xu J, Li L, Heng D, Han S, Yin J, Peng B et al (2014) Transcriptome analysis of the hippocampus in novel rat model of febrile seizures. PLoS One 9(4):e95237. doi:10.1371/journal.pone.0095237

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693. doi:10.1002/art.23758

    Article  PubMed  Google Scholar 

  30. Wierda KD, Sorensen JB (2014) Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 34(6):2100–2110. doi:10.1523/jneurosci.3934-13.2014

    Article  CAS  Google Scholar 

  31. Jiang W, Duong TM, de Lanerolle NC (1999) The neuropathology of hyperthermic seizures in the rat. Epilepsia 40(1):5–19

    Article  CAS  PubMed  Google Scholar 

  32. Radzicki D, Yau HJ, Pollema-Mays SL, Mlsna L, Cho K, Koh S, Martina M (2013) Temperature-sensitive Cav1.2 calcium channels support intrinsic firing of pyramidal neurons and provide a target for the treatment of febrile seizures. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 33(24):9920–9931. doi:10.1523/JNEUROSCI.5482-12.2013

    Article  CAS  Google Scholar 

  33. Yu F, Liu Y, Wang Y, Yin J, Wang H, Liu W, Peng B, He X (2011) Protective effect of the KCNQ activator flupirtine on a model of repetitive febrile seizures. Epilepsy Res 97(1–2):64–72. doi:10.1016/j.eplepsyres.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  34. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82(1):24–45. doi:10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  35. Tang BL (2014) Class II HDACs and neuronal regeneration. J Cell Biochem 115(7):1225–1233. doi:10.1002/jcb.24802

    Article  CAS  PubMed  Google Scholar 

  36. Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1):151–159

    Article  CAS  PubMed  Google Scholar 

  37. McClelland S, Flynn C, Dube C, Richichi C, Zha Q, Ghestem A, Esclapez M, Bernard C et al (2011) Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann Neurol 70(3):454–464. doi:10.1002/ana.22479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin HW, Levison SW (2009) Context-dependent IL-6 potentiation of interferon- gamma-induced IL-12 secretion and CD40 expression in murine microglia. J Neurochem 111(3):808–818. doi:10.1111/j.1471-4159.2009.06366.x

    Article  CAS  PubMed  Google Scholar 

  39. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S et al (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12(7):2623–2633

    Article  CAS  PubMed  Google Scholar 

  40. Shahrokhi A, Zare-Shahabadi A, Soltani S, Ashrafi MR, Zoghi S, Hosseini SA, Heidari M, Yaghmaei B et al (2014) Association of IL6 single nucleotide polymorphisms with febrile seizures. J Neurol Sci 342(1–2):25–28. doi:10.1016/j.jns.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  41. Guven AS, Icagasioglu FD, Duksal F, Sancakdar E, Alaygut D, Uysal EB, Akkar I, Oflaz MB et al (2015) Serum adiponectin, leptin, and interleukin 6 levels as adipocytokines in children with febrile seizures: the role of adipose tissue in febrile seizures. Human & Experimental Toxicology 34(9):878–883. doi:10.1177/0960327114561662

    Article  CAS  Google Scholar 

  42. Zhang J, Ji F, Liu Y, Lei X, Li H, Ji G, Yuan Z, Jiao J (2014) Ezh2 regulates adult hippocampal neurogenesis and memory. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 34(15):5184–5199. doi:10.1523/JNEUROSCI.4129-13.2014

    Article  Google Scholar 

  43. Xiao Z, Peng J, Yang L, Kong H, Yin F (2015) Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 282:110–117. doi:10.1016/j.jneuroim.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  44. Saha S, Hu Y, Martin SC, Bandyopadhyay S, Russek SJ, Farb DH (2013) Polycomblike protein PHF1b: a transcriptional sensor for GABA receptor activity. BMC Pharmacology & Toxicology 14:37. doi:10.1186/2050-6511-14-37

    Article  CAS  Google Scholar 

  45. Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 28(8):2718–2731. doi:10.1128/MCB.02017-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Sciences Foundation of China (Nos. 81171127, 81371422, 81401230, 81401241). The funders have no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors gratefully acknowledge the support of Dr. Feng Li for the critical reading and editing of the manuscript. We also gratefully acknowledge the support of Dr. Jing Yao (Wuhan University, China) and Mr. Mingfei Feng (NovelBio, Shanghai, China) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Han or Xiaohua He.

Ethics declarations

All protocols and procedures are performed in compliance with the Guide for the Care and Use of ABSL-3 laboratory and approved through the Animal Ethics Committee of the Wuhan University (permit number SCXK 2008–0004).

Competing Interest

The authors declare that they have no competing interests.

Additional information

Zhongcheng Wang and Yusong Zhang contributed equally to this work.

Electronic Supplementary Material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, Y., Fang, J. et al. Decreased Methylation Level of H3K27me3 Increases Seizure Susceptibility. Mol Neurobiol 54, 7343–7352 (2017). https://doi.org/10.1007/s12035-016-0197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0197-4

Keywords

Navigation