Skip to main content
Log in

Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors’ antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 μM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 12(9):667–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lapidus KA, Soleimani L, Murrough JW (2013) Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat 9:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wieronska JM, Pilc A (2013) Glutamate-based anxiolytic ligands in clinical trials. Expert Opin Investig Drugs 22(8):1007–1022

    Article  CAS  PubMed  Google Scholar 

  4. Mohler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60(7–8):1042–1049

    Article  PubMed  Google Scholar 

  5. Dinan T (2006) Therapeutic options: addressing the current dilemma. Eur Neuropsychopharmacol 16(Suppl 2):S119–127

    Article  CAS  PubMed  Google Scholar 

  6. Almeida RF, Cereser VH Jr, Faraco RB, Bohmer AE, Souza DO, Ganzella M (2010) Systemic administration of GMP induces anxiolytic-like behavior in rats. Pharmacol Biochem Behav 96(3):306–311

    Article  CAS  PubMed  Google Scholar 

  7. Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA et al (2014) Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jun C, Choi Y, Lim SM, Bae S, Hong YS, Kim JE, Lyoo IK (2014) Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol 23(1):28–35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9(9):948–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zimmer ER, Torrez VR, Kalinine E, Augustin MC, Zenki KC, Almeida RF, Hansel G, Muller AP et al (2015) Long-term NMDAR antagonism correlates reduced astrocytic glutamate uptake with anxiety-like phenotype. Front Cell Neurosci 9:219

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121(8):799–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopes LV, Sebastiao AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11(8):1087–1101

    Article  CAS  PubMed  Google Scholar 

  13. Sperlagh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11(8):1034–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costenla AR, Diogenes MJ, Canas PM, Rodrigues RJ, Nogueira C, Maroco J, Agostinho PM, Ribeiro JA et al (2011) Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34(1):12–21

    Article  PubMed  Google Scholar 

  15. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt AP, Bohmer AE, Schallenberger C, Antunes C, Tavares RG, Wofchuk ST, Elisabetsky E, Souza DO (2010) Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br J Pharmacol 159(6):1247–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, Lopez MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416

    Article  CAS  PubMed  Google Scholar 

  19. Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 9(2):e90693

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frizzo ME, Lara DR, Dahm KC, Prokopiuk AS, Swanson RA, Souza DO (2001) Activation of glutamate uptake by guanosine in primary astrocyte cultures. Neuroreport 12(4):879–881

    Article  CAS  PubMed  Google Scholar 

  21. Quincozes-Santos A, Bobermin LD, de Souza DG, Bellaver B, Goncalves CA, Souza DO (2013) Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal 9(4):643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martin de Saavedra MD, del Barrio L et al (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem Int 61(3):397–404

    Article  CAS  PubMed  Google Scholar 

  23. Vinade ER, Izquierdo I, Lara DR, Schmidt AP, Souza DO (2004) Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol Learn Mem 81(2):137–143

    Article  CAS  PubMed  Google Scholar 

  24. Prediger RD, Batista LC, Takahashi RN (2004) Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevated plus-maze in mice. Eur J Pharmacol 499(1–2):147–154

    Article  CAS  PubMed  Google Scholar 

  25. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  26. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170

    Article  CAS  PubMed  Google Scholar 

  27. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  28. Ganzella M, Moreira JD, Almeida RF, Bohmer AE, Saute JA, Holmseth S, Souza DO (2012) Effects of 3 weeks GMP oral administration on glutamatergic parameters in mice neocortex. Purinergic Signal 8(1):49–58

    Article  CAS  PubMed  Google Scholar 

  29. Nunez-Figueredo Y, Ramirez-Sanchez J, Hansel G, Simoes Pires EN, Merino N, Valdes O, Delgado-Hernandez R, Parra AL et al (2014) A novel multi-target ligand (JM-20) protects mitochondrial integrity, inhibits brain excitatory amino acid release and reduces cerebral ischemia injury in vitro and in vivo. Neuropharmacology 85:517–527

    Article  CAS  PubMed  Google Scholar 

  30. Almeida RF, Thomazi AP, Godinho GF, Saute JA, Wofchuk ST, Souza DO, Ganzella M (2010) Effects of depressive-like behavior of rats on brain glutamate uptake. Neurochem Res 35(8):1164–1171

    Article  CAS  PubMed  Google Scholar 

  31. Tavares RG, Schmidt AP, Abud J, Tasca CI, Souza DO (2005) In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem Res 30(4):439–444

    Article  CAS  PubMed  Google Scholar 

  32. Wang SJ (2007) Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors. Synapse 61(6):401–411

    Article  CAS  PubMed  Google Scholar 

  33. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112(2):319–329

    Article  CAS  PubMed  Google Scholar 

  34. Yu CL, Louie TM, Summers R, Kale Y, Gopishetty S, Subramanian M (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191(14):4624–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eckeli AL, Dach F, Rodrigues AL (2000) Acute treatments with GMP produce antidepressant-like effects in mice. Neuroreport 11(9):1839–1843

    Article  CAS  PubMed  Google Scholar 

  36. Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira A, Colla AR, Rodrigues AL (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234(2):137–148

    Article  CAS  PubMed  Google Scholar 

  37. Soares FA, Schmidt AP, Farina M, Frizzo ME, Tavares RG, Portela LV, Lara DR, Souza DO (2004) Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res 1005(1–2):182–186

    Article  CAS  PubMed  Google Scholar 

  38. Giuliani P, Ballerini P, Ciccarelli R, Buccella S, Romano S, D’Alimonte I, Poli A, Beraudi A et al (2012) Tissue distribution and metabolism of guanosine in rats following intraperitoneal injection. J Biol Regul Homeost Agents 26(1):51–65

    CAS  PubMed  Google Scholar 

  39. Ciccarelli R, Di Iorio P, D’Alimonte I, Giuliani P, Florio T, Caciagli F, Middlemiss PJ, Rathbone MP (2000) Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the co-presence of microglia. Glia 29(3):202–211

    Article  CAS  PubMed  Google Scholar 

  40. Jackson EK, Cheng D, Jackson TC, Verrier JD, Gillespie DG (2013) Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 304(5):C406–421

    Article  CAS  PubMed  Google Scholar 

  41. Jackson EK, Mi Z (2014) The guanosine-adenosine interaction exists in vivo. J Pharmacol Exp Ther 350(3):719–726

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lara DR, Schmidt AP, Frizzo ME, Burgos JS, Ramirez G, Souza DO (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912(2):176–180

    Article  CAS  PubMed  Google Scholar 

  43. Traversa U, Bombi G, Camaioni E, Macchiarulo A, Costantino G, Palmieri C, Caciagli F, Pellicciari R (2003) Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. Bioorg Med Chem 11(24):5417–5425

    Article  CAS  PubMed  Google Scholar 

  44. Paniz LG, Calcagnotto ME, Pandolfo P, Machado DG, Santos GF, Hansel G, Almeida RF, Bruch RS et al (2014) Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 29(3):645–654

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt AP, Paniz L, Schallenberger C, Bohmer AE, Wofchuk ST, Elisabetsky E, Portela LV, Souza DO (2009) Guanosine prevents thermal hyperalgesia in a rat model of peripheral mononeuropathy. J Pain 11(2):131–141

    Article  PubMed  Google Scholar 

  46. Molz S, Dal-Cim T, Budni J, Martin-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues AL et al (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase 3beta pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    Article  CAS  PubMed  Google Scholar 

  47. Bienvenu TC, Busti D, Magill PJ, Ferraguti F, Capogna M (2012) Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron 74(6):1059–1074

    Article  CAS  PubMed  Google Scholar 

  48. Cunha RA, Correia-de-Sa P, Sebastiao AM, Ribeiro JA (1996) Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br J Pharmacol 119(2):253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133(1):79–83

    Article  CAS  PubMed  Google Scholar 

  50. Lindberg D, Shan D, Ayers-Ringler J, Oliveros A, Benitez J, Prieto M, McCullumsmith R, Choi DS (2015) Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med 15(3):275–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17(14):5271–5280

    CAS  PubMed  Google Scholar 

  52. Maximino C, Lima MG, Olivera KR, Picanco-Diniz DL, Herculano AM (2011) Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in zebrafish. Basic Clin Pharmacol Toxicol 109(3):203–207

    Article  CAS  PubMed  Google Scholar 

  53. Homayoun H, Khavandgar S, Zarrindast MR (2001) Effects of adenosine receptor agonists and antagonists on pentylenetetrazole-induced amnesia. Eur J Pharmacol 430(2–3):289–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Instituto Nacional de Ciência e Tecnologia (INCT) para Excitotoxicidade e Neuroproteção, Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Financiadora de Estudos e Projetos (FINEP) research grant “Rede Instituto Brasileiro de Neurociências (IBN-Net)”, #01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Onofre Souza.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Material Supplementary 1

CAF per se did not affect the anxiety-related behavior assessed by the EPM task. The percentage of time spent in the open arms (A), the total distance travelled in open arms (cm) (B) and the total distance travelled (cm) (C) were evaluated in the EPM task 60 minutes after i.p. administration of CAF 10 mg/kg. The number of transitions (D) and the time spent in the light compartment (E) were evaluated in the light/dark task 60 minutes after i.p. CAF 10 mg/kg administration. The total distance travelled (F), the time spent in the center zone (G) and the distance travelled in center zone (H) were evaluated in the round open field task 60 minutes after i.p. CAF 10 mg/kg. Data are reported as the mean ± S.E.M. and were analyzed by unpaired Student’s t test. *p < 0.05 and **p < 0.01, compared to the saline group (n = 5 animals/group). (GIF 22 kb)

High Resolution Image (TIF 18454 kb)

Material Supplementary 2

CSF purine levels 60 minutes after i.p. saline administration: a comparison between two different protocols to preserve CSF purines. CSF purine levels 60 minutes after i.p. injection of saline. To avoid purines degradation, 2 different conditions for CSF sampling were evaluated: i) Method I – CSF samples maintained in ice for approximately 1 h and then stored in -80 °C, ii) Method II – CSF samples frozen immediately after collection in dry ice and then stored at −80 °C. By freezing the samples in dry ice immediately after the centrifugation, there was a robust nucleoside preservation. CSF levels of GMP were undetectable. Data are expressed as the mean ± SD and were analyzed by unpaired Student’s t test (n = 7 per group). *p < 0.05 compared to the Method I group. (GIF 14 kb)

High Resolution Image (TIF 1265 kb)

Material Supplementary 3

Analysis of hippocampal synaptosomal preparations. Different stages of our in vitro synaptosomal preparation homogenate (H), supernatant (S1) and synaptosomal preparation (SP) were characterized by evaluating different proteins (SNAP 25, VAMP, β Tub III, EAAC1, PSD 95, GFAP, GLT-1, NR1, GLUA1 and MAO A) by quantitative Western blot analysis as described in the Materials and Methods section; n = 3 animals. (GIF 39 kb)

High Resolution Image (TIF 117 kb)

Material Supplementary 4

DPCPX dose response curve In vitro K+-stimulated GLU release was evaluated after 1 minute of synaptosomal depolarization as described in the Materials and Methods section. The different DPCPX doses (25 nM, 50 nM, 100 nM, 250 nM) were tested. Data are reported as the mean ± S.E.M. and were analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test (n = 5 animals/group). (GIF 11 kb)

High Resolution Image (TIF 6677 kb)

Material Supplementary 5

CAF modulates CSF levels of XAN and UA. CSF levels of INO and GUO (A); HIPO, XANT and UA (B) were measured 60 minutes after i.p. saline or 7.5 mg/kg GUO administration. Data are reported as the mean ± S.E.M. and were analyzed by unpaired Student’s t test. CSF levels of INO and GUO (C); HIPO, XANT and UA (D) were measured 60 minutes after i.p. saline or 7.5 mg/kg GUO administration, which was preceded by 15 minutes of i.p. saline or 10 mg/kg CAF pre-administration. Data are reported as the mean ± S.E.M., and differences among groups were determined by two-way ANOVA followed by Bonferroni’s post hoc test when applicable. *p < 0.05 and **p < 0.01, compared to the saline group (n = 10–12 animals/group). (GIF 40 kb)

High Resolution Image (TIF 23459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, R.F., Comasseto, D.D., Ramos, D.B. et al. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol Neurobiol 54, 423–436 (2017). https://doi.org/10.1007/s12035-015-9660-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9660-x

Keywords

Navigation