Skip to main content

Advertisement

Log in

Nociceptin/Orphanin FQ Inhibits the Survival and Axon Growth of Midbrain Dopaminergic Neurons Through a p38-MAPK Dependent Mechanism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nociceptin/orphanin FQ (N/OFQ) is an opioid-like neuropeptide that binds and signals through a G-protein-coupled receptor called the N/OFQ peptide (NOP) receptor. N/OFQ and the NOP receptor are expressed in the midbrain and have been implicated in the pathogenesis of Parkinson’s disease (PD). Genetic removal of the N/OFQ precursor partially protects midbrain dopaminergic neurons from 1-methyl-4-phenylpyridine-induced toxicity, suggesting that endogenous N/OFQ may be detrimental to dopaminergic neurons. However, whether N/OFQ directly affects the survival and growth of dopaminergic neurons is unknown. Here, we show that N/OFQ has a detrimental effect on the survival of dopaminergic neurons and the growth of their axons in primary cultures of the E14 rat ventral mesencephalon. N/OFQ potentiates the effects of the neurotoxins 6-hydroxydopamine and 1-methyl-4-phenylpyridinium through p38-MAPK signalling. We also show that like α-synuclein, there is a significant reduction in N/OFQ messenger RNA (mRNA) expression in the midbrain of patients with Parkinson’s disease. These results demonstrate for the first time that N/OFQ is detrimental to the survival and growth of dopaminergic neurons and that its expression is altered in the midbrain of patients with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066. doi:10.1016/S0140-6736(09)60492-X

    Article  CAS  PubMed  Google Scholar 

  2. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  3. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  4. Bethlem J, Den Hartog Jager WA (1960) The incidence and characteristics of Lewy bodies in idiopathic paralysis agitans (Parkinson’s disease). J Neurol Neurosurg Psychiatry 23:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14(3):153–197

    Article  CAS  PubMed  Google Scholar 

  6. Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27(1):8–30. doi:10.1002/mds.23795

    Article  CAS  PubMed  Google Scholar 

  7. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  8. Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci 151(1):83–87

    Article  CAS  PubMed  Google Scholar 

  9. Greffard S, Verny M, Bonnet AM, Beinis JY, Gallinari C, Meaume S, Piette F, Hauw JJ, Duyckaerts C (2006) Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol 63(4):584–588. doi:10.1001/archneur.63.4.584

    Article  PubMed  Google Scholar 

  10. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, de la Fuente-Fernandez R, Calne DB, Stoessl AJ (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47(4):493–503

    Article  CAS  PubMed  Google Scholar 

  11. Finkelstein DI, Stanic D, Parish CL, Tomas D, Dickson K, Horne MK (2000) Axonal sprouting following lesions of the rat substantia nigra. Neuroscience 97(1):99–112

    Article  CAS  PubMed  Google Scholar 

  12. Stanic D, Finkelstein DI, Bourke DW, Drago J, Horne MK (2003) Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci 18(5):1175–1188

    Article  CAS  PubMed  Google Scholar 

  13. Bezard E, Gross CE, Brotchie JM (2003) Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 26(4):215–221. doi:10.1016/S0166-2236(03)00038-9

    Article  CAS  PubMed  Google Scholar 

  14. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 9423:1783–1793. doi:10.1016/S0140-6736(04)16305-8

    Article  CAS  Google Scholar 

  15. Toulouse A, Sullivan AM (2008) Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 85(4):376–392. doi:10.1016/j.pneurobio.2008.05.003

    Article  PubMed  Google Scholar 

  16. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377(6549):532–535. doi:10.1038/377532a0

    Article  CAS  PubMed  Google Scholar 

  17. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270(5237):792–794

    Article  CAS  PubMed  Google Scholar 

  18. Calo G, Bigoni R, Rizzi A, Guerrini R, Salvadori S, Regoli D (2000) Nociceptin/orphanin FQ receptor ligands. Peptides 21(7):935–947

    Article  CAS  PubMed  Google Scholar 

  19. Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53(3):381–415

    CAS  PubMed  Google Scholar 

  20. Mollereau C, Moisand C, Butour JL, Parmentier M, Meunier JC (1996) Replacement of Gln280 by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Lett 395(1):17–21

    Article  CAS  PubMed  Google Scholar 

  21. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol 412(4):563–605

    Article  CAS  PubMed  Google Scholar 

  22. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406(4):503–547

    Article  CAS  PubMed  Google Scholar 

  23. Lambert DG (2008) The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7(8):694–710. doi:10.1038/nrd2572

    Article  CAS  PubMed  Google Scholar 

  24. Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, Di Benedetto M, Buzas B, Reinscheid RK, Salvadori S, Guerrini R, Romualdi P, Candeletti S, Simonato M, Cox BM, Morari M (2005) Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci 25(42):9591–9601. doi:10.1523/JNEUROSCI.2546-05.2005

    Article  CAS  PubMed  Google Scholar 

  25. Marti M, Sarubbo S, Latini F, Cavallo M, Eleopra R, Biguzzi S, Lettieri C, Conti C, Simonato M, Zucchini S, Quatrale R, Sensi M, Candeletti S, Romualdi P, Morari M (2010) Brain interstitial nociceptin/orphanin FQ levels are elevated in Parkinson’s disease. Mov Disord 25(11):1723–1732. doi:10.1002/mds.23271

    Article  PubMed  Google Scholar 

  26. Viaro R, Sanchez-Pernaute R, Marti M, Trapella C, Isacson O, Morari M (2008) Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism. Neurobiol Dis 30(3):430–438. doi:10.1016/j.nbd.2008.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Visanji NP, de Bie RM, Johnston TH, McCreary AC, Brotchie JM, Fox SH (2008) The nociceptin/orphanin FQ (NOP) receptor antagonist J-113397 enhances the effects of levodopa in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 23(13):1922–1925. doi:10.1002/mds.22086

    Article  PubMed  Google Scholar 

  28. Ozawa A, Brunori G, Mercatelli D, Wu J, Cippitelli A, Zou B, Xie XS, Williams M, Zaveri NT, Low S, Scherrer G, Kieffer BL, Toll L (2015) Knock-in mice with NOP-eGFP receptors identify receptor cellular and regional localization. J Neurosci 35(33):11682–11693. doi:10.1523/JNEUROSCI.5122-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maidment NT, Chen Y, Tan AM, Murphy NP, Leslie FM (2002) Rat ventral midbrain dopamine neurons express the orphanin FQ/nociceptin receptor ORL-1. Neuroreport 13(9):1137–1140

    Article  CAS  PubMed  Google Scholar 

  30. Norton CS, Neal CR, Kumar S, Akil H, Watson SJ (2002) Nociceptin/orphanin FQ and opioid receptor-like receptor mRNA expression in dopamine systems. J Comp Neurol 444(4):358–368

    Article  CAS  PubMed  Google Scholar 

  31. Acosta C, Davies A (2008) Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J Neurosci Res 86(5):1077–1086. doi:10.1002/jnr.21565

    Article  CAS  PubMed  Google Scholar 

  32. Buzas B, Symes AJ, Cox BM (1999) Regulation of nociceptin/orphanin FQ gene expression by neuropoietic cytokines and neurotrophic factors in neurons and astrocytes. J Neurochem 72(5):1882–1889

    Article  CAS  PubMed  Google Scholar 

  33. Brown JM, Gouty S, Iyer V, Rosenberger J, Cox BM (2006) Differential protection against MPTP or methamphetamine toxicity in dopamine neurons by deletion of ppN/OFQ expression. J Neurochem 98(2):495–505. doi:10.1111/j.1471-4159.2006.03902.x

    Article  CAS  PubMed  Google Scholar 

  34. Neal CR Jr, Akil H, Watson SJ Jr (2001) Expression of orphanin FQ and the opioid receptor-like (ORL1) receptor in the developing human and rat brain. J Chem Neuroanat 22(4):219–249

    Article  CAS  PubMed  Google Scholar 

  35. Marti M, Guerrini R, Beani L, Bianchi C, Morari M (2002) Nociceptin/orphanin FQ receptors modulate glutamate extracellular levels in the substantia nigra pars reticulata. A microdialysis study in the awake freely moving rat. Neuroscience 112(1):153–160

    Article  CAS  PubMed  Google Scholar 

  36. Mallimo EM, Kusnecov AW (2013) The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 7:173. doi:10.3389/fncel.2013.00173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marti M, Mela F, Veronesi C, Guerrini R, Salvadori S, Federici M, Mercuri NB, Rizzi A, Franchi G, Beani L, Bianchi C, Morari M (2004) Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior. J Neurosci 24(30):6659–6666. doi:10.1523/JNEUROSCI.0987-04.2004

    Article  CAS  PubMed  Google Scholar 

  38. New DC, Wong YH (2002) The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neuro-Signals 11(4):197–212

    Article  CAS  PubMed  Google Scholar 

  39. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430. doi:10.1146/annurev.pharmtox.40.1.389

    Article  CAS  PubMed  Google Scholar 

  40. Crotty S, Fitzgerald P, Tuohy E, Harris DM, Fisher A, Mandel A, Bolton AE, Sullivan AM, Nolan Y (2008) Neuroprotective effects of novel phosphatidylglycerol-based phospholipids in the 6-hydroxydopamine model of Parkinson’s disease. Eur J Neurosci 27(2):294–300. doi:10.1111/j.1460-9568.2007.06018.x

    Article  CAS  PubMed  Google Scholar 

  41. Presgraves SP, Ahmed T, Borwege S, Joyce JN (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5(8):579–598

    Article  PubMed  Google Scholar 

  42. Collins LM, O’Keeffe GW, Long-Smith CM, Wyatt SL, Sullivan AM, Toulouse A, Nolan YM (2013) Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons. Neruomol Med 15(2):435–446. doi:10.1007/s12017-013-8230-5

    Article  CAS  Google Scholar 

  43. Hegarty SV, Collins LM, Gavin AM, Roche SL, Wyatt SL, Sullivan AM, O’Keeffe GW (2014) Canonical BMP-Smad signalling promotes neurite growth in rat midbrain dopaminergic neurons. Neruomol Med. doi:10.1007/s12017-014-8299-5

    Google Scholar 

  44. Cheng J, Standifer KM, Tublin PR, Su W, Pasternak GW (1995) Demonstration of kappa 3-opioid receptors in the SH-SY5Y human neuroblastoma cell line. J Neurochem 65(1):170–175

    Article  CAS  PubMed  Google Scholar 

  45. Connor M, Yeo A, Henderson G (1996) The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol 118(2):205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizzi A, Spagnolo B, Wainford RD, Fischetti C, Guerrini R, Marzola G, Baldisserotto A, Salvadori S, Regoli D, Kapusta DR, Calo G (2007) In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides 28(6):1240–1251. doi:10.1016/j.peptides.2007.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calo G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG, Salvadori S, Regoli D (2002) [Nphe1, Arg14, Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol 136(2):303–311. doi:10.1038/sj.bjp.0704706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, Ronzoni S, Giardina GA, Scheideler MA (2004) Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahy dro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther 308(2):454–461. doi:10.1124/jpet.103.055848

    Article  CAS  PubMed  Google Scholar 

  49. Spagnolo B, Carra G, Fantin M, Fischetti C, Hebbes C, McDonald J, Barnes TA, Rizzi A, Trapella C, Fanton G, Morari M, Lambert DG, Regoli D, Calo G (2007) Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrah ydro-5H-benzocyclohepten-5-ol]: in vitro studies. J Pharmacol Exp Ther 321(3):961–967. doi:10.1124/jpet.106.116764

    Article  CAS  PubMed  Google Scholar 

  50. Gutierrez H, Davies AM (2007) A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology. J Neurosci Methods 163(1):24–30. doi:10.1016/j.jneumeth.2007.02.002

    Article  PubMed  Google Scholar 

  51. O’Keeffe GW, Dockery P, Sullivan AM (2004) Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J Neurocytol 33(5):479–488

    Article  PubMed  Google Scholar 

  52. Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med GenPart B Neuropsychiatr Genet 137B(1):5–16. doi:10.1002/ajmg.b.30195

    Article  Google Scholar 

  53. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7(1):1–11. doi:10.1007/s10048-005-0020-2

    Article  CAS  PubMed  Google Scholar 

  54. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3(6), e98. doi:10.1371/journal.pgen.0030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22):2825–2827. doi:10.1093/bioinformatics/btl476

    Article  CAS  PubMed  Google Scholar 

  56. Hegarty SV, Sullivan AM, O’Keeffe GW (2013) BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Mol Cell Neurosci 56:263–271. doi:10.1016/j.mcn.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  57. Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123(8):1086–1092

    CAS  Google Scholar 

  58. Collins LM, Adriaanse LJ, Theratile SD, Hegarty SV, Sullivan AM, O’Keeffe GW (2014) Class-IIa histone deacetylase inhibition promotes the growth of neural processes and protects them against neurotoxic insult. Mol Neurobiol. doi:10.1007/s12035-014-8820-8

    PubMed Central  Google Scholar 

  59. Marti M, Trapella C, Morari M (2008) The novel nociceptin/orphanin FQ receptor antagonist Trap-101 alleviates experimental parkinsonism through inhibition of the nigro-thalamic pathway: positive interaction with L-DOPA. J Neurochem 107(6):1683–1696. doi:10.1111/j.1471-4159.2008.05735.x

    Article  CAS  PubMed  Google Scholar 

  60. Volta M, Mabrouk OS, Bido S, Marti M, Morari M (2010) Further evidence for an involvement of nociceptin/orphanin FQ in the pathophysiology of Parkinson’s disease: a behavioral and neurochemical study in reserpinized mice. J Neurochem 115(6):1543–1555. doi:10.1111/j.1471-4159.2010.07061.x

    Article  CAS  PubMed  Google Scholar 

  61. Armstead WM (2006) Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur J Pharmacol 529(1–3):129–135. doi:10.1016/j.ejphar.2005.08.059

    Article  CAS  PubMed  Google Scholar 

  62. Karunakaran S, Saeed U, Mishra M, Valli RK, Joshi SD, Meka DP, Seth P, Ravindranath V (2008) Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. J Neurosci 28(47):12500–12509. doi:10.1523/JNEUROSCI.4511-08.2008

    Article  CAS  PubMed  Google Scholar 

  63. Hu X, Weng Z, Chu CT, Zhang L, Cao G, Gao Y, Signore A, Zhu J, Hastings T, Greenamyre JT, Chen J (2011) Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 31(1):247–261. doi:10.1523/JNEUROSCI.4589-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Izumi Y, Yamamoto N, Matsuo T, Wakita S, Takeuchi H, Kume T, Katsuki H, Sawada H, Akaike A (2009) Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation. J Neurochem 110(2):745–755. doi:10.1111/j.1471-4159.2009.06178.x

    Article  CAS  PubMed  Google Scholar 

  65. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 279(19):20451–20460. doi:10.1074/jbc.M311164200

    Article  CAS  PubMed  Google Scholar 

  66. Jeohn GH, Cooper CL, Wilson B, Chang RC, Jang KJ, Kim HC, Liu B, Hong JS (2002) p38 MAP kinase is involved in lipopolysaccharide-induced dopaminergic neuronal cell death in rat mesencephalic neuron-glia cultures. Ann N Y Acad Sci 962:332–346

    Article  CAS  PubMed  Google Scholar 

  67. Gomez-Lazaro M, Galindo MF, Concannon CG, Segura MF, Fernandez-Gomez FJ, Llecha N, Comella JX, Prehn JH, Jordan J (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104(6):1599–1612. doi:10.1111/j.1471-4159.2007.05115.x

    Article  CAS  PubMed  Google Scholar 

  68. Di Benedetto M, Cavina C, D’Addario C, Leoni G, Candeletti S, Cox BM, Romualdi P (2009) Alterations of N/OFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats. Neuropharmacology 56(4):761–767. doi:10.1016/j.neuropharm.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  69. Gouty S, Brown JM, Rosenberger J, Cox BM (2010) MPTP treatment increases expression of pre-pro-nociceptin/orphanin FQ mRNA in a subset of substantia nigra reticulata neurons. Neuroscience 169(1):269–278. doi:10.1016/j.neuroscience.2010.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Sean Crampton for the technical assistance. This work was supported by grant support from Science Foundation Ireland (Grant No. :10/RFP/NES2786) (GO’K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele Morari or Gerard W. O’Keeffe.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, L.M., Dal Bo, G., Calcagno, M. et al. Nociceptin/Orphanin FQ Inhibits the Survival and Axon Growth of Midbrain Dopaminergic Neurons Through a p38-MAPK Dependent Mechanism. Mol Neurobiol 53, 7284–7297 (2016). https://doi.org/10.1007/s12035-015-9611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9611-6

Keywords

Navigation