Skip to main content

Advertisement

Log in

Astrocytes Regulate Angiogenesis Through the Jagged1-Mediated Notch1 Pathway After Status Epilepticus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Vascular disruptions including blood–brain barrier breakdown and pathologic angiogenesis contribute to the development of epilepsy in normal brains. The Notch signaling pathway is activated in response to seizure activity, and its activation promotes seizures, although its exact role in angiogenesis is poorly understood. Here, we have examined the role of Notch signaling in angiogenesis in a kainic acid-induced mouse model of epilepsy. We show that following seizures, expression of the Notch ligand Jagged1 in the hippocampus is upregulated in astrocytes and levels of activated Notch1 are increased in endothelial cells. Using an in vitro model of angiogenesis, we provide evidence that brain endothelial tube formation is promoted in the presence of astrocytes. Isolated primary brain endothelial cells develop significantly longer vascular sprouts when cultured in the presence of astrocytes. Notch1 signaling is activated in brain endothelial cells cocultured with astrocytes, and astrocytic Jagged1 expression is required for angiogenic enhancement, as shown by the inhibitory effect of Jagged1 small interfering RNA (siRNA) expression in astrocytes on endothelial cell vascular sprouting in vitro. Therapies targeting the Jagged1/Notch1 signaling pathway may therefore be effective in limiting aberrant angiogenesis following status epilepticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morin-Brureau M, Rigau V, Lerner-Natoli M (2012) Why and how to target angiogenesis in focal epilepsies. Epilepsia 53(Suppl 6):64–8

    Article  CAS  PubMed  Google Scholar 

  2. Ndode-Ekane XE, Hayward N, Gröhn O, Pitkänen A (2010) Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience 166(1):312–32

    Article  CAS  PubMed  Google Scholar 

  3. Marcon J, Gagliardi B, Balosso S, Maroso M, Noé F, Morin M, Lerner-Natoli M, Vezzani A et al (2009) Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis 34(1):121–32

    Article  CAS  PubMed  Google Scholar 

  4. Newton SS (2003) Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 23(34):10841–10851

    CAS  PubMed  Google Scholar 

  5. Marchi N (2010) Blood–brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity. Brain Res 1353:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marchi N (2011) The etiological role of blood–brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol 2011:482415

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, Gidon M, Cohen A et al (2008) Blood–brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 79(7):774–7

    Article  CAS  PubMed  Google Scholar 

  8. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T et al (2007) Seizure-promoting effect of blood–brain barrier disruption. Epilepsia 48(4):732–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14(12):1377–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence & quest. J Cereb Blood Flow Metab 32(7):1207–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  12. Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ables JL et al (2011) Not (ch) just development: notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A et al (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with notch. Dev Cell 20(3):291–302

    Article  CAS  PubMed  Google Scholar 

  16. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z, Wang X, Xing X et al (2014) Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 49(2):633–44

    Article  CAS  PubMed  Google Scholar 

  17. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–94

    Article  CAS  PubMed  Google Scholar 

  18. Holcik M (2000) The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci 97(5):2286–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 91(22):10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakatsu M, Jaeger D, Christopher H (2007) Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp 3:186

    Google Scholar 

  21. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M et al (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130(Pt 7):1942–56

    Article  PubMed  Google Scholar 

  22. Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14(2):375–403

    Article  CAS  PubMed  Google Scholar 

  23. Haseloff RF (2005) In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1):25–39

    Article  CAS  PubMed  Google Scholar 

  24. Bell RD (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marchi N, Lerner-Natoli M (2013) Cerebrovascular remodeling and epilepsy. Neuroscientist 19(3):304–312

    Article  PubMed  Google Scholar 

  26. Croll SD, Goodman JH, Scharfman HE (2004) Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 548:57–68

  27. Argaw AT (2012) Astrocyte-derived VEGF-a drives blood–brain barrier disruption in CNS inflammatory disease. J Clin Invest 122(7):2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    Article  CAS  PubMed  Google Scholar 

  29. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 2009-2-264 from Chongqing Municipal Health Bureau Research Fund, grant cstc2012gg-yyjs0838 from Chongqing Science and Technology Commission scientific and technological projects, and the Chongqing Natural Science Foundation (2008-4-174).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Zhai or Li Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Liang, P., Li, Y. et al. Astrocytes Regulate Angiogenesis Through the Jagged1-Mediated Notch1 Pathway After Status Epilepticus. Mol Neurobiol 53, 5893–5901 (2016). https://doi.org/10.1007/s12035-015-9492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9492-8

Keywords

Navigation