Skip to main content

Advertisement

Log in

Iron and Neurodegeneration: Is Ferritinophagy the Link?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALAS2:

5′-Aminolevulinate synthase 2

ALS:

Amyotrophic lateral sclerosis

ALS2:

Amyotrophic lateral sclerosis 2, juvenile

APs:

Amyloid plaques

APP:

Amyloid precursor protein (amyloid beta A4 precursor protein)

ATG5:

Autophagy related 5

ATG7:

Autophagy related 7

ATG9A:

Autophagy related 9A

ATG11:

Autophagy related 11

ATP13A2/PARK9:

ATPase type 13A2

ATXN2:

Ataxin 2

AV:

Autophagic vacuole

BBB:

Blood-brain barrier

C9orf72:

Chromosome 9 open reading frame 72

C19orf12:

Chromosome 19 open reading frame 12

CBD:

Corticobasal degeneration

CHMP2B:

Charged multivesicular body protein 2B

CMA:

Chaperone-mediated autophagy

CoASY:

Coenzyme-A synthase

CP:

Ceruloplasmin

CTSC:

Cathepsin C

DAO:

d-Aminoacid oxidase

DCYTB:

Duodenal cytochrome b (CYBRD1, cytochrome b reductase 1)

DMT1:

Divalent metal transporter 1 (SLC11A2, solute carrier family 11, proton-coupled divalent metal ion transporter, member 2)

DJ-1/PARK7:

Parkinson protein 7

FA2H:

Fatty acid 2 hydroxylase

FBXL5:

F-box and leucine-rich repeat protein 5

FPN1:

Ferroportin 1 (SLC40A1, solute carrier family 40, iron-regulated transporter, member 1)

FT:

Ferritin

FTH1:

Ferritin heavy polypeptide 1

FTL:

Ferritin light polypeptide

FTLD:

Frontotemporal lobar dementia

FTMT:

Mitochondrial ferritin

FRDA:

Friedreich’s ataxia

FUS:

Fused in sarcoma (FUS RNA-binding protein)

FXN:

Frataxin

GABARAP:

GABA(A) receptor-associated protein

GABARAPL1:

GABA(A) receptor-associated protein-like 1

GABARAPL2:

GABA(A) receptor-associated protein-like 2

GBA1:

Glucocerebrosidase A1 (GBA, glucosidase beta, acid)

HAMP:

Hepcidin

HCP1:

Heme carrier protein 1 (SLC46A1, solute carrier family 46, folate transporter, member 1)

HD:

Huntington’s disease

HEPH:

Hephaestin

HF:

Hereditary ferritinopathy

HFE:

Haemochromatosis

HO1:

Heme oxygenase 1 (HMOX1)

HTRA2/PARK13:

HtrA serine peptidase 2

HTT:

Huntingtin

IRE:

Iron-responsive element

IRP1:

Iron regulatory protein 1 (ACO1, aconitase 1)

IRP2:

Iron regulatory protein 2 (IREB2, iron-responsive element-binding protein 2)

LAMP1:

Lysosomal-associated membrane protein 1

LAMP2:

Lysosomal-associated membrane protein 2

LC3:

Microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A)

LIP:

Labile iron pool

LRRK2/PARK8:

Leucine-rich repeat kinase 2

LSD:

Lysosomal storage disease

MAPT:

Microtubule-associated protein tau

MCOLN1:

Mucolipin 1

MEF:

Mouse embryonic fibroblast

MFN1:

Mitoferrin 1 (SLC25A37, solute carrier family 25 member 37)

MFN2:

Mitoferrin 2 (SLC25A28, solute carrier family 25 member 28)

MSA:

Multiple system atrophy

mtor:

Mechanistic target of rapamycin

NBIA:

Neurodegeneration with brain iron accumulation

NBR1:

Neighbour of BRCA1 gene 1

NCOA4:

Nuclear receptor co-activator 4

NDP52:

Nuclear dot protein 52 (CALCOCO2, calcium binding and coiled-coil domain 2)

NFT:

Neurofibrillary tangles

NTBI:

Non-transferrin bound iron

OPTN:

Optineurin

PANK2:

Pantothenate kinase 2

PARK2:

Parkin

PCBP1:

Poly rC-binding protein 1

PCBP2:

Poly rC-binding protein 2

PD:

Parkinson’s disease

PFN1:

Profilin 1

PGRN:

Progranulin (GRN, granulin)

PINK1/PARK6:

PTEN-induced putative kinase 1

PLA2G6/PARK14:

Phospholipase A2 group VI

PSEN1:

Presenilin 1

PSENEN:

Presenilin enhancer γ-secretase subunit

PSP:

Progressive supranuclear palsy

RAB29/PARK16:

RAB29 member RAS oncogene family (PARK16, Parkinson disease 16)

RAB38:

RAB38 member RAS oncogene family

ROS:

Reactive oxygen species

SG:

Stress granule

SIGMAR1:

Sigma non-opioid intracellular receptor 1

SILAC:

Stable isotope labelling by amino acids in cell culture

SNCA:

α-Synuclein

SNCA/PARK1:

α-Synuclein gene mutation

SNCA/PARK4:

α-Synuclein gene multiplication

SOD1:

Superoxide dismutase 1

SOD2:

Superoxide dismutase 2, mitochondrial

SQSTM1:

Sequestosome 1

SREBF1:

Sterol regulatory element-binding transcription factor 1

STEAP3:

STEAP family member 3, metalloreductase

TDP-43:

TAR DNA-binding protein (TARDBP)

TF:

Transferrin

TFEB:

Transcription factor EB

TFR1:

Transferrin receptor 1 (TFRC, transferrin receptor)

TIM2:

T cell immunoglobulin and mucin domain-2 (Timd2)

TMEM106B:

Transmembrane protein 106B

TMPRSS6:

Transmembrane protease, serine 6

UB:

Ubiquitin

UBQLN2:

Ubiquilin 2

UCH-L1/PARK5:

Ubiquitin carboxyl-terminal esterase L1

UPS:

Ubiquitin proteasome system

UTR:

Untranslated region

VAPB:

VAMP-associated protein B and C

VCP:

Valosin-containing protein

VPS35/PARK17:

Vacuolar protein sorting 35 (VPS35 retromer complex component)

WDR45:

WD repeat domain 45

References

  1. Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  CAS  PubMed  Google Scholar 

  2. Muhoberac BB, Vidal R (2013) Abnormal iron homeostasis and neurodegeneration. Front Aging Neurosci 5:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kono S (2012) Aceruloplasminemia. Curr Drug Targets 13:1190–1199

    Article  CAS  PubMed  Google Scholar 

  4. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  Google Scholar 

  5. Linder MC (2013) Mobilization of stored iron in mammals: a review. Nutr 5:4022–4050

    Google Scholar 

  6. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 1852:1347–1359

    Article  CAS  PubMed  Google Scholar 

  8. Lane DJ, Merlot AM, Huang ML, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta 1853:1130–1144

    Article  CAS  PubMed  Google Scholar 

  9. Theil EC (2011) Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol 15:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merle U, Fein E, Gehrke SG, Stremmel W, Kulaksiz H (2007) The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 148:2663–2668

    Article  CAS  PubMed  Google Scholar 

  11. Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y (2008) Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol 197:241–249

    Article  CAS  PubMed  Google Scholar 

  12. Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B, Iannelli A, Staccini-Myx A et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796

    Article  CAS  PubMed  Google Scholar 

  13. Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT (2010) Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 285:31217–31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M (2012) α-Synuclein expression is modulated at the translational level by iron. Neuroreport 23:576–580

    Article  CAS  PubMed  Google Scholar 

  15. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14:551–564

    Article  CAS  PubMed  Google Scholar 

  16. Dickinson TK, Connor JR (1995) Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain. J Comp Neurol 355:67–80

    Article  CAS  PubMed  Google Scholar 

  17. Todorich B, Zhang X, Slagle-Webb B, Seaman WE, Connor JR (2008) Tim-2 is the receptor for H-ferritin on oligodendrocytes. J Neurochem 107:1495–1505

    Article  CAS  PubMed  Google Scholar 

  18. Marques F, Falcao AM, Sousa JC, Coppola G, Geschwind D, Sousa N, Correia-Neves M, Palha JA (2009) Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology 150:2822–2828

    Article  CAS  PubMed  Google Scholar 

  19. McCarthy RC, Kosman DJ (2015) Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 72:709–727

    Article  CAS  PubMed  Google Scholar 

  20. Zechel S, Huber-Wittmer K, von B, Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res 84:790–800

    Article  CAS  PubMed  Google Scholar 

  21. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, González-Billault C, Núñez MT (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126:541–549

    Article  CAS  PubMed  Google Scholar 

  22. Qian ZM, He X, Liang T, Wu KC, Yan YC, Lu LN, Yang G, Luo QQ et al (2014) Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway. Mol Neurobiol 50:811–820

    Article  CAS  PubMed  Google Scholar 

  23. Cocco E, Porrini V, Derosas M, Nardi V, Biasiotto G, Maccarinelli F, Zanella I (2013) Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells. Mol Biol Rep 40:6757–6764

    Article  CAS  PubMed  Google Scholar 

  24. Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL, Lubach GR, Carruthers A et al (2015) A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab 35:48–57

    Article  CAS  PubMed  Google Scholar 

  25. Torti FM, Torti SV (2002) Regulation of ferritin genes and protein. Blood 99:3505–3516

    Article  CAS  PubMed  Google Scholar 

  26. Truty J, Malpe R, Linder MC (2001) Iron prevents ferritin turnover in hepatic cells. J Biol Chem 276:48775–48780

    Article  CAS  PubMed  Google Scholar 

  27. Kleiger G, Mayor T (2014) Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol 24:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathol 226:255–273

    Article  PubMed  Google Scholar 

  29. Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25:354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    Article  CAS  PubMed  Google Scholar 

  31. Park C, Cuervo AM (2013) Selective autophagy: talking with the UPS. Cell Biochem Biophys 67:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rudeck M, Volk T, Sitte N, Grune T (2000) Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome. IUBMB Life 49:451–456

    Article  CAS  PubMed  Google Scholar 

  33. Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  CAS  PubMed  Google Scholar 

  34. Kwok JC, Richardson DR (2004) Examination of the mechanism(s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents. Mol Pharmacol 65:181–195

    Article  CAS  PubMed  Google Scholar 

  35. Mehlhase J, Sandig G, Pantopoulos K, Grune T (2005) Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 38:276–285

    Article  CAS  PubMed  Google Scholar 

  36. De Domenico I, Ward DM, Kaplan J (2009) Specific iron chelators determine the route of ferritin degradation. Blood 114:4546–4551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, Kaplan J (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25:5396–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bulvik BE, Berenshtein E, Meyron-Holtz EG, Konijn AM, Chevion M (2012) Cardiac protection by preconditioning is generated via an iron-signal created by proteasomal degradation of iron proteins. PLoS One 7:e48947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fedorko ME, Cross NL, Hirsch JG (1973) Appearance and distribution of ferritin in mouse peritoneal macrophages in vitro after uptake of heterologous erythrocytes. J Cell Biol 57:289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marton PF (1975) Ultrastructural study of erythrophagocytosis in the rat bone marrow II. Iron metabolism in reticulum cells following red cell digestion. Scand J Haematol Suppl 23:27–48

    CAS  PubMed  Google Scholar 

  41. Hernández-Yago J, Knecht E, Martínez-Ramón A, Grisolía S (1980) Autophagy of ferritin incorporated into the cytosol of Hela cells by liposomes. Cell Tissue Res 205:303–309

    Article  PubMed  Google Scholar 

  42. Hultcrantz R, Glaumann H (1987) Intracellular fate of ferritin in HeLa cells following microinjection. Exp Cell Res 171:203–212

    Article  CAS  PubMed  Google Scholar 

  43. Bridges KR, Hoffman KE (1986) The effects of ascorbic acid on the intracellular metabolism of iron and ferritin. J Biol Chem 261:14273–14277

    CAS  PubMed  Google Scholar 

  44. Bridges KR (1987) Ascorbic acid inhibits lysosomal autophagy of ferritin. J Biol Chem 262:14773–14778

    CAS  PubMed  Google Scholar 

  45. Larson JA, Howie HL, So M (2004) Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol Microbiol 53:807–820

    Article  CAS  PubMed  Google Scholar 

  46. Xu P, Lin Y, Porter K, Liton PB (2014) Ascorbic acid modulation of iron homeostasis and lysosomal function in trabecular meshwork cells. J Ocul Pharmacol Ther 30:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ollinger K, Roberg K (1997) Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide. J Biol Chem 272:23707–23711

    Article  CAS  PubMed  Google Scholar 

  48. Roberts S, Bomford A (1988) Ferritin iron kinetics and protein turnover in K562 cells. J Biol Chem 263:19181–19187

    CAS  PubMed  Google Scholar 

  49. Sakaida I, Kyle ME, Farber JL (1990) Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol 37:435–442

    CAS  PubMed  Google Scholar 

  50. Vaisman B, Fibach E, Konijn AM (1997) Utilization of intracellular ferritin iron for hemoglobin synthesis in developing human erythroid precursors. Blood 90:831–838

    CAS  PubMed  Google Scholar 

  51. Goralska M, Nagar S, Fleisher LN, McGahan MC (2005) Differential degradation of ferritin H- and L-chains: accumulation of L-chain-rich ferritin in lens epithelial cells. Invest Ophthalmol Vis Sci 46:3521–3529

    Article  PubMed  Google Scholar 

  52. Kidane TZ, Sauble E, Linder MC (2006) Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol 291:C445–455

    Article  CAS  PubMed  Google Scholar 

  53. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43:1686–1697

    Article  CAS  PubMed  Google Scholar 

  55. Karlsson M, Frennesson C, Gustafsson T, Brunk UT, Nilsson SE, Kurz T (2013) Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Exp Eye Res 116:359–365

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Mikhael M, Xu D, Li Y, Soe-Lin S, Ning B, Li W, Nie G et al (2010) Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal 13:999–1009

    Article  CAS  PubMed  Google Scholar 

  57. Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K (2011) Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 31:2040–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KS, Wong WS, Shen HM (2014) Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem 289:33425–33441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z et al (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079

    Article  CAS  PubMed  Google Scholar 

  60. Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N (2014) Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J Cell Sci 127:4089–4102

    Article  CAS  PubMed  Google Scholar 

  61. Kollara A, Brown TJ (2012) Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci 69:3895–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dengjel J, Høyer-Hansen M, Nielsen MO, Eisenberg T, Harder LM, Schandorff S, Farkas T, Kirkegaard T et al (2012) Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics 11:M111.014035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sharifi N, Hurt EM, Thomas SB, Farrar WL (2008) Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res 14:6073–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell SH, Zhu W, Young CY (1999) Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Res 59:5892–5895

    CAS  PubMed  Google Scholar 

  65. Gammella E, Buratti P, Cairo G, Recalcati S (2014) Macrophages: central regulators of iron balance. Metallomics 6:1336–1345

    Article  CAS  PubMed  Google Scholar 

  66. Roy CN, Mak HH, Akpan I, Losyev G, Zurakowski D, Andrews NC (2007) Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 109:4038–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kroot JJ, Tjalsma H, Fleming RE, Swinkels DW (2011) Hepcidin in human iron disorders: diagnostic implications. Clin Chem 57:1650–1669

    Article  CAS  PubMed  Google Scholar 

  68. Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, Mayo MM, Samuel SM et al (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 40:569–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kautz L, Jung G, Nemeth E, Ganz T (2014) Erythroferrone contributes to recovery from anemia of inflammation. Blood 124:2569–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weber GJ, Choe SE, Dooley KA, Paffett-Lugassy NN, Zhou Y, Zon LI (2005) Mutant-specific gene programs in the zebrafish. Blood 106:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goh SH, Josleyn M, Lee YT, Danner RL, Gherman RB, Cam MC, Miller JL (2007) The human reticulocyte transcriptome. Physiol Genomics 30:172–178

    Article  CAS  PubMed  Google Scholar 

  72. Merkerova M, Vasikova A, Bruchova H, Libalova H, Topinka J, Balascak I, Sram RJ, Brdicka R (2009) Differential gene expression in umbilical cord blood and maternal peripheral blood. Eur J Haematol 83:183–190

    Article  CAS  PubMed  Google Scholar 

  73. Peled M, Fisher EA (2014) Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol 5:579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Hubler MJ, Peterson KR, Hasty AH (2015) Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab 26:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Lorenzo D, Biasiotto G, Zanella I (2014) Source of iron overload in multiple sclerosis. Cell Mol Life Sci 71:3187–3189

    Article  PubMed  CAS  Google Scholar 

  76. Lunova M, Goehring C, Kuscuoglu D, Mueller K, Chen Y, Walther P, Deschemin JC, Vaulont S et al (2014) Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload. J Hepatol 61:633–641

    Article  CAS  PubMed  Google Scholar 

  77. Belsham DD, Evangelou A, Roy D, Duc VL, Brown TJ (1998) Regulation of gonadotropin-releasing hormone (GnRH) gene expression by 5 alpha-dihydrotestosterone in GnRH-secreting GT1-7 hypothalamic neurons. Endocrinology 139:1108–1114

    CAS  PubMed  Google Scholar 

  78. Alen P, Claessens F, Schoenmakers E, Swinnen JV, Verhoeven G, Rombauts W, Peeters B (1999) Interaction of the putative androgen receptor-specific co-activator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol Endocrinol 13:117–128

    CAS  PubMed  Google Scholar 

  79. Siriett V, Nicholas G, Berry C, Watson T, Hennebry A, Thomas M, Ling N, Sharma M et al (2006) Myostatin negatively regulates the expression of the steroid receptor co-factor ARA70. J Cell Physiol 206:255–263

    Article  CAS  PubMed  Google Scholar 

  80. Kollara A, Brown TJ (2010) Variable expression of nuclear receptor co-activator 4 (NcoA4) during mouse embryonic development. J Histochem Cytochem 58:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. http://www.genecards.org/

  82. http://www.proteinatlas.org/

  83. Damme M, Suntio T, Saftig P, Eskelinen EL (2015) Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 129:337–362

    Article  CAS  PubMed  Google Scholar 

  84. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4 pii: a008839

  86. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  87. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  88. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 43:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peric A, Annaert W (2015) Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 129:363–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y (2012) Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90:1105–1118

    Article  CAS  PubMed  Google Scholar 

  91. Pasternak SH, Bagshaw RD, Guiral M, Zhang S, Ackerley CA, Pak BJ, Callahan JW, Mahuran DJ (2003) Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 278:26687–26694

    Article  CAS  PubMed  Google Scholar 

  92. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Coffey EE, Beckel JM, Laties AM, Mitchell CH (2014) Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D et al (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134:258–277

    Article  PubMed  Google Scholar 

  95. Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12:370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34:7988–7998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34:9607–9620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M et al (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6:1142–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K et al (2010) Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18:291–295

    Article  CAS  PubMed  Google Scholar 

  101. Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer’s disease. J Cell Mol Med 12:1548–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS, Mook-Jung I (2006) Furin is an endogenous regulator of alpha-secretase associated APP processing. Biochem Biophys Res Commun 349:654–659

    Article  CAS  PubMed  Google Scholar 

  103. Li X, Liu Y, Zheng Q, Yao G, Cheng P, Bu G, Xu H, Zhang YW (2013) Ferritin light chain interacts with PEN-2 and affects γ-secretase activity. Neurosci Lett 548:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ali-Rahmani F, Schengrund CL, Connor JR (2014) HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease. Front Pharmacol 5:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bonda DJ, Liu G, Men P, Perry G, Smith MA, Zhu X (2012) Nanoparticle delivery of transition-metal chelators to the brain: Oxidative stress will never see it coming! CNS. Neurol Disord Drug Targets 11:81–85

    Article  CAS  Google Scholar 

  106. Bartzokis G, Tishler TA (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cell Mol Biol (Noisy-le-grand) 46:821–833

    CAS  Google Scholar 

  107. Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37(1):127–36

    CAS  PubMed  Google Scholar 

  108. Lopes KO, Sparks DL, Streit WJ (2008) Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 56:1048–1060

    Article  PubMed  Google Scholar 

  109. Quintana C, Gutiérrez L (2010) Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases? Biochim Biophys Acta 1800:770–782

    Article  CAS  PubMed  Google Scholar 

  110. Galazka-Friedman J, Bauminger ER, Szlachta K, Friedman A (2012) The role of iron in neurodegeneration—Mössbauer spectroscopy, electron microscopy, enzyme-linked immunosorbent assay and neuroimaging studies. J Phys Condens Matter 24:244106

    Article  PubMed  CAS  Google Scholar 

  111. Cox D, Carver JA, Ecroyd H (2014) Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta 1842:1830–1843

    Article  CAS  PubMed  Google Scholar 

  112. McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 326:155–158

    Article  CAS  PubMed  Google Scholar 

  113. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  114. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A 103:5805–5810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    Article  PubMed  Google Scholar 

  116. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252

    Article  CAS  PubMed  Google Scholar 

  119. Gómez-Suaga P, Fdez E, Fernández B, Martínez-Salvador M, Blanca Ramírez M, Madero-Pérez J, Rivero-Ríos P, Fuentes JM et al (2014) Novel insights into the neurobiology underlying LRRK2-linked Parkinson’s disease. Neuropharmacology 85:45–56

    Article  PubMed  CAS  Google Scholar 

  120. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, MacCabe BD, Marder KS et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77:425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Veen S, Sørensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P (2014) Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders. Front Mol Neurosci 7:48

    PubMed  PubMed Central  Google Scholar 

  122. Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, Cooper A, Garner B et al (2014) Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137:834–848

    Article  PubMed  PubMed Central  Google Scholar 

  123. McGlinchey RP, Lee JC (2013) Emerging insights into the mechanistic link between α-synuclein and glucocerebrosidase in Parkinson’s disease. Biochem Soc Trans 41:1509–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McKeon JE, Sha D, Li L, Chin LS (2015) Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell Mol Life Sci 72:1811–1824

    Article  CAS  PubMed  Google Scholar 

  125. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC (2014) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun 5:3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ivatt RM, Sanchez-Martinez A, Godena VK, Brown S, Ziviani E, Whitworth AJ (2014) Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy. Proc Natl Acad Sci U S A 111:8494–8499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277:6344–6352

    Article  CAS  PubMed  Google Scholar 

  129. Jiang P, Gan M, Lin WL, Yen SH (2014) Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway. Front Aging Neurosci 6:268

    Article  PubMed  PubMed Central  Google Scholar 

  130. Settembre C, Ballabio A (2014) Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 24:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Savolainen MH, Richie CT, Harvey BK, Männistö PT, Maguire-Zeiss KA, Myöhänen TT (2014) The beneficial effect of a prolyl oligopeptidase inhibitor, KYP-2047, on alpha-synuclein clearance and autophagy in A30P transgenic mouse. Neurobiol Dis 68:1–15

    Article  CAS  PubMed  Google Scholar 

  132. Jang W, Kim HJ, Li H, Jo KD, Lee MK, Song SH, Yang HO (2014) 1,25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun 451:142–147

    Article  CAS  PubMed  Google Scholar 

  133. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A 110:E1817–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118:939–957

    Article  PubMed  CAS  Google Scholar 

  135. Weinreb O, Mandel S, Youdim MB, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64

    Article  CAS  PubMed  Google Scholar 

  136. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105:18578–18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 20:345–356

    Article  CAS  PubMed  Google Scholar 

  138. Jia W, Xu H, Du X, Jiang H, Xie J (2015) Ndfip1 attenuated 6-OHDA-induced iron accumulation via regulating the degradation of DMT1. Neurobiol Aging 36:1183–1193

    Article  CAS  PubMed  Google Scholar 

  139. Tabuchi M, Yanatori I, Kawai Y, Kishi F (2010) Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 123:756–766

    Article  CAS  PubMed  Google Scholar 

  140. Song N, Wang J, Jiang H, Xie J (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48:332–341

    Article  CAS  PubMed  Google Scholar 

  141. Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, Bush AI, Finkelstein DI (2013) Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol 73:554–559

    Article  CAS  PubMed  Google Scholar 

  142. Kostka M, Högen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–11003

    Article  CAS  PubMed  Google Scholar 

  143. He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H (2013) Role of α-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol 45:1019–1030

    Article  CAS  PubMed  Google Scholar 

  144. Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6, e15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Allen GF, Toth R, James J, Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Friedman A, Galazka-Friedman J (2012) The history of the research of iron in parkinsonian substantia nigra. J Neural Transm 119:1507–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tribl F, Asan E, Arzberger T, Tatschner T, Langenfeld E, Meyer HE, Bringmann G, Riederer P et al (2009) Identification of L-ferritin in neuromelanin granules of the human substantia nigra: a targeted proteomics approach. Mol Cell Proteomics 8:1832–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Paisán-Ruiz C, Li A, Schneider SA, Holton JL, Johnson R, Kidd D, Chataway J, Bhatia KP et al (2012) Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 33:814–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Popławska-Domaszewicz K, Florczak-Wyspiańska J, Kozubski W (2014) Update on neurodegeneration with brain iron accumulation. Neurol Neurochir Pol 48:206–213

    PubMed  Google Scholar 

  150. Rinaldi DE, Corradi GR, Cuesta LM, Adamo HP, de Tezanos PF (2015) The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. Biochim Biophys Acta 1850:1646–1655

    Article  CAS  Google Scholar 

  151. Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35

    Article  CAS  PubMed  Google Scholar 

  152. Koga H, Martinez-Vicente M, Arias E, Kaushik S, Sulzer D, Cuervo AM (2011) Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci 31:18492–18505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Qi L, Zhang XD, Wu JC, Lin F, Wang J, DiFiglia M, Qin ZH (2012) The role of chaperone-mediated autophagy in huntingtin degradation. PLoS One 7, e46834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M (2006) Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 172:605–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. del Toro D, Alberch J, Lázaro-Diéguez F, Martín-Ibáñez R, Xifró X, Egea G, Canals JM (2009) Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 20:1478–1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL et al (2014) Potential function for the huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Metzger S, Saukko M, Van Che H, Tong L, Puder Y, Riess O, Nguyen HP (2010) Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet 128:453–459

    Article  CAS  PubMed  Google Scholar 

  160. Proenca CC, Stoehr N, Bernhard M, Seger S, Genoud C, Roscic A, Paganetti P, Liu S et al (2013) Atg4b-dependent autophagic flux alleviates Huntington’s disease progression. PLoS One 8, e68357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sarkar S, Rubinsztein DC (2008) Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J 275:4263–4270

    Article  CAS  PubMed  Google Scholar 

  162. Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner S (2010) A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc Natl Acad Sci U S A 107:16982–16987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fernandez-Estevez MA, Casarejos MJ, López Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, Perucho J, de Yebenes JG et al (2014) Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 9, e90202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lai AY, Lan CP, Hasan S, Brown ME, McLaurin J (2014) scyllo-Inositol promotes robust mutant huntingtin protein degradation. J Biol Chem 289:3666–3676

    Article  CAS  PubMed  Google Scholar 

  165. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA et al (2012) PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4:142ra197

    Article  CAS  Google Scholar 

  166. Muller M, Leavitt BR (2014) Iron dysregulation in Huntington’s disease. J Neurochem 130:328–350

    Article  CAS  PubMed  Google Scholar 

  167. van den Bogaard SJ, Dumas EM, Roos RA (2013) The role of iron imaging in Huntington’s disease. Int Rev Neurobiol 110:241–250

    Article  PubMed  Google Scholar 

  168. Sánchez-Castañeda C, Squitieri F, Di Paola M, Dayan M, Petrollini M, Sabatini U (2015) The role of iron in gray matter degeneration in Huntington’s disease: a magnetic resonance imaging study. Hum Brain Mapp 36:50–66

    Article  PubMed  Google Scholar 

  169. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55:1074–1084

    Article  PubMed  Google Scholar 

  170. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  171. Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI et al (2013) Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 8, e77023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16:1905–1920

    Article  CAS  PubMed  Google Scholar 

  173. Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F, MacDonald ME (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9:2789–2797

    Article  CAS  PubMed  Google Scholar 

  174. Nguyen T, Hamby A, Massa SM (2005) Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:11840–11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cardoso F (2014) Differential diagnosis of Huntington’s disease: what the clinician should know. Neurodegener Dis Manag 4:67–72

    Article  PubMed  Google Scholar 

  176. Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VM, Trojanowski JQ (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491

    Article  PubMed  Google Scholar 

  177. Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Thomas M, Alegre-Abarrategui J, Wade-Martins R (2013) RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain 136:1345–1360

    Article  PubMed  Google Scholar 

  179. Bendotti C, Marino M, Cheroni C, Fontana E, Crippa V, Poletti A, De Biasi S (2012) Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Prog Neurobiol 97:101–126

    Article  CAS  PubMed  Google Scholar 

  180. Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, Onesto E, Messi E et al (2014) ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 79:70–78

    Article  CAS  PubMed  Google Scholar 

  181. Bandyopadhyay U, Nagy M, Fenton WA, Horwich AL (2014) Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc Natl Acad Sci U S A 111:11055–11060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z et al (2014) Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 49:1435–1448

    Article  CAS  PubMed  Google Scholar 

  183. Crippa V, Boncoraglio A, Galbiati M, Aggarwal T, Rusmini P, Giorgetti E, Cristofani R, Carra S et al (2013) Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Front Cell Neurosci 7:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Tian F, Morimoto N, Liu W, Ohta Y, Deguchi K, Miyazaki K, Abe K (2011) In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis. Autophagy 7:985–992

    Article  CAS  PubMed  Google Scholar 

  185. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E et al (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456

    Article  CAS  PubMed  Google Scholar 

  186. Kim J, Kim TY, Cho KS, Kim HN, Koh JY (2013) Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 59:80–85

    Article  CAS  PubMed  Google Scholar 

  187. Zhang K, Shi P, An T, Wang Q, Wang J, Li Z, Duan W, Li C et al (2013) Food restriction-induced autophagy modulates degradation of mutant SOD1 in an amyotrophic lateral sclerosis mouse model. Brain Res 1519:112–119

    Article  CAS  PubMed  Google Scholar 

  188. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B et al (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9:1308–1320

    Article  CAS  PubMed  Google Scholar 

  189. Zhang X, Li L, Chen S, Yang D, Wang Y, Wang Z, Le W (2011) Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7:412–425

    Article  CAS  PubMed  Google Scholar 

  190. Otomo A, Kunita R, Suzuki-Utsunomiya K, Ikeda JE, Hadano S (2011) Defective relocalization of ALS2/alsin missense mutants to Rac1-induced macropinosomes accounts for loss of their cellular function and leads to disturbed amphisome formation. FEBS Lett 585:730–736

    Article  CAS  PubMed  Google Scholar 

  191. Moustaqim-Barrette A, Lin YQ, Pradhan S, Neely GG, Bellen HJ, Tsuda H (2014) The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet 23:1975–1989

    Article  CAS  PubMed  Google Scholar 

  192. Paul P, de Belleroche J (2014) The role of D-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS). Front Synaptic Neurosci 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Bentmann E, Haass C, Dormann D (2013) Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280:4348–4370

    Article  CAS  PubMed  Google Scholar 

  194. Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35:2822–2831

    Article  CAS  PubMed  Google Scholar 

  196. Figley MD, Bieri G, Kolaitis RM, Taylor JP, Gitler AD (2014) Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics. J Neurosci 34:8083–8097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18:1385–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B, Behl C, Terzic J, Dikic I (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 126:580–592

    Article  CAS  PubMed  Google Scholar 

  199. Osaka M, Ito D, Yagi T, Nihei Y, Suzuki N (2015) Evidence of a link between ubiquilin 2 and optineurin in amyotrophic lateral sclerosis. Hum Mol Genet 24:1617–1629

    Article  CAS  PubMed  Google Scholar 

  200. Wong YC, Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111:E4439–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T et al (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rusten TE, Simonsen A (2008) ESCRT functions in autophagy and associated disease. Cell Cycle 7:1166–1172

    Article  CAS  PubMed  Google Scholar 

  203. Isaacs AM, Johannsen P, Holm I, Nielsen JE, consortium F (2011) Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 8:246–251

    Article  Google Scholar 

  204. Vollrath JT, Sechi A, Dreser A, Katona I, Wiemuth D, Vervoorts J, Dohmen M, Chandrasekar A et al (2014) Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 5, e1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wu Q, Liu M, Huang C, Liu X, Huang B, Li N, Zhou H, Xia XG (2015) Pathogenic Ubqln2 gains toxic properties to induce neuron death. Acta Neuropathol 129:417–428

    Article  CAS  PubMed  Google Scholar 

  206. Rea SL, Majcher V, Searle MS, Layfield R (2014) SQSTM1 mutations—bridging Paget disease of bone and ALS/FTLD. Exp Cell Res 325:27–37

    Article  CAS  PubMed  Google Scholar 

  207. Lattante S, de Calbiac H, Le Ber I, Brice A, Ciura S, Kabashi E (2015) Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Hum Mol Genet 24:1682–1690

    Article  CAS  PubMed  Google Scholar 

  208. Nalbandian A, Donkervoort S, Dec E, Badadani M, Katheria V, Rana P, Nguyen C, Mukherjee J et al (2011) The multiple faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget’s disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci 45:522–531

    Article  CAS  PubMed  Google Scholar 

  209. Yamamoto A, Simonsen A (2011) The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 43:17–28

    Article  CAS  PubMed  Google Scholar 

  210. Walker AK, Soo KY, Sundaramoorthy V, Parakh S, Ma Y, Farg MA, Wallace RH, Crouch PJ et al (2013) ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One 8, e81170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, Tsvetkov A, Pleiss M et al (2014) Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 10:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ, Consortium I (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  Google Scholar 

  216. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, Halloran MA, Gleeson PA et al (2014) C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23:3579–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, van Blitterswijk MM, Jansen-West K et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tao Z, Wang H, Xia Q, Li K, Jiang X, Xu G, Wang G, Ying Z (2015) Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 24:2426–2441

    Article  CAS  PubMed  Google Scholar 

  221. Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, Yu X, Wuertzer CA et al (2010) Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol 177:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Götzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, Janssens J, van der Zee J et al (2014) Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127:845–860

    PubMed  Google Scholar 

  225. Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM (2014) Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 61:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jiang T, Yu JT, Zhu XC, Zhang QQ, Cao L, Wang HF, Tan MS, Gao Q et al (2014) Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology 85:121–130

    Article  CAS  PubMed  Google Scholar 

  227. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB, Dobson-Stone C, Brooks WS et al (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686–699

    Article  PubMed  PubMed Central  Google Scholar 

  228. Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, Nogata Y, Kachi K et al (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846

    Article  CAS  PubMed  Google Scholar 

  229. Langkammer C, Enzinger C, Quasthoff S, Grafenauer P, Soellinger M, Fazekas F, Ropele S (2010) Mapping of iron deposition in conjunction with assessment of nerve fiber tract integrity in amyotrophic lateral sclerosis. J Magn Reson Imaging 31:1339–1345

    Article  PubMed  Google Scholar 

  230. Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7, e35241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ignjatović A, Stević Z, Lavrnić S, Daković M, Bačić G (2013) Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 38:1472–1479

    Article  PubMed  Google Scholar 

  232. Yu J, Qi F, Wang N, Gao P, Dai S, Lu Y, Su Q, Du Y et al (2014) Increased iron level in motor cortex of amyotrophic lateral sclerosis patients: an in vivo MR study. Amyotroph Lateral Scler Frontotemporal Degener 15:357–361

    Article  CAS  PubMed  Google Scholar 

  233. Adachi Y, Sato N, Saito Y, Kimura Y, Nakata Y, Ito K, Kamiya K, Matsuda H et al (2015) Usefulness of SWI for the detection of iron in the motor cortex in amyotrophic lateral sclerosis. J Neuroimaging 25:443–451

    Article  PubMed  Google Scholar 

  234. Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995) Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130:203–208

    Article  CAS  PubMed  Google Scholar 

  235. Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G (2009) Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. J Mol Neurosci 38:85–93

    Article  CAS  PubMed  Google Scholar 

  236. Olsen MK, Roberds SL, Ellerbrock BR, Fleck TJ, McKinley DK, Gurney ME (2001) Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Ann Neurol 50:730–740

    Article  CAS  PubMed  Google Scholar 

  237. Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    Article  CAS  PubMed  Google Scholar 

  238. Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z et al (2014) Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A 111:E1035–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bamm VV, Harauz G (2014) Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 71:1789–1798

    Article  CAS  PubMed  Google Scholar 

  240. Mitchell RM, Simmons Z, Beard JL, Stephens HE, Connor JR (2010) Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve 42:95–103

    Article  CAS  PubMed  Google Scholar 

  241. Ikeda K, Hirayama T, Takazawa T, Kawabe K, Iwasaki Y (2012) Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in Japanese patients with amyotrophic lateral sclerosis: a cross-sectional study. Intern Med 51:1501–1508

    Article  CAS  PubMed  Google Scholar 

  242. Nadjar Y, Gordon P, Corcia P, Bensimon G, Pieroni L, Meininger V, Salachas F (2012) Elevated serum ferritin is associated with reduced survival in amyotrophic lateral sclerosis. PLoS One 7, e45034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Veyrat-Durebex C, Corcia P, Mucha A, Benzimra S, Mallet C, Gendrot C, Moreau C, Devos D et al (2014) Iron metabolism disturbance in a French cohort of ALS patients. Biomed Res Int 2014:485723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, Yamada M, Koumura A et al (2011) Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 303:95–99

    Article  CAS  PubMed  Google Scholar 

  245. Conti A, Iannaccone S, Sferrazza B, De Monte L, Cappa S, Franciotta D, Olivieri S, Alessio M (2008) Differential expression of ceruloplasmin isoforms in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Proteomics Clin Appl 2:1628–1637

    Article  CAS  PubMed  Google Scholar 

  246. Nandar W, Connor JR (2011) HFE gene variants affect iron in the brain. J Nutr 141:729S–739S

    Article  CAS  PubMed  Google Scholar 

  247. Liu Y, Lee SY, Neely E, Nandar W, Moyo M, Simmons Z, Connor JR (2011) Mutant HFE H63D protein is associated with prolonged endoplasmic reticulum stress and increased neuronal vulnerability. J Biol Chem 286:13161–13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Su XW, Lee SY, Mitchell RM, Stephens HE, Simmons Z, Connor JR (2013) H63D HFE polymorphisms are associated with increased disease duration and decreased muscle superoxide dismutase-1 expression in amyotrophic lateral sclerosis patients. Muscle Nerve 48:242–246

    Article  CAS  PubMed  Google Scholar 

  249. Nandar W, Neely EB, Simmons Z, Connor JR (2014) H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1842:2413–2426

    Article  CAS  PubMed  Google Scholar 

  250. Deschauer M, Gaul C, Behrmann C, Prokisch H, Zierz S, Haack TB (2012) C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J Neurol 259:2434–2439

    Article  CAS  PubMed  Google Scholar 

  251. Santillo AF, Skoglund L, Lindau M, Eeg-Olofsson KE, Tovi M, Engler H, Brundin RM, Ingvast S et al (2009) Frontotemporal dementia-amyotrophic lateral sclerosis complex is simulated by neurodegeneration with brain iron accumulation. Alzheimer Dis Assoc Disord 23:298–300

    Article  PubMed  Google Scholar 

  252. Schweitzer K, Decker E, Zhu L, Miller RE, Mirra SS, Spina S, Ghetti B, Wang M et al (2006) Aberrantly regulated proteins in frontotemporal dementia. Biochem Biophys Res Commun 348:465–472

    Article  CAS  PubMed  Google Scholar 

  253. De Reuck JL, Deramecourt V, Auger F, Durieux N, Cordonnier C, Devos D, Defebvre L, Moreau C et al (2014) Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study. Eur J Neurol 21:1026–1031

    Article  PubMed  Google Scholar 

  254. Gazzina S, Premi E, Zanella I, Biasiotto G, Archetti S, Cosseddu M, Scarpini E, Galimberti D, Serpente M, Gasparotti R, Padovani A, Borroni B. Iron in frontotemporal lobar degeneration: a new subcortical pathological pathway? (accepted for publication in Neurodegener Dis)

  255. Dusek P, Jankovic J, Le W (2012) Iron dysregulation in movement disorders. Neurobiol Dis 46:1–18

    Article  CAS  PubMed  Google Scholar 

  256. Arber CE, Li A, Houlden H, Wray S (2015) Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol. doi:10.1111/nan.12242

    PubMed  PubMed Central  Google Scholar 

  257. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N et al (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45(445–449):449e441

    Google Scholar 

  258. Zanella I, Derosas M, Corrado M, Cocco E, Cavadini P, Biasiotto G, Poli M, Verardi R et al (2008) The effects of frataxin silencing in HeLa cells are rescued by the expression of human mitochondrial ferritin. Biochim Biophys Acta 1782:90–98

    Article  CAS  PubMed  Google Scholar 

  259. Martelli A, Puccio H (2014) Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol 5:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M et al (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24:1987–1995

    Article  CAS  PubMed  Google Scholar 

  261. Deguchi K, Ikeda K, Kume K, Takata T, Kokudo Y, Kamada M, Touge T, Honjo N et al (2015) Significance of the hot-cross bun sign on T2*-weighted MRI for the diagnosis of multiple system atrophy. J Neurol. doi:10.1007/s00415-015-7728-1

    PubMed  Google Scholar 

  262. Sugiyama A, Ito S, Suichi T, Sakurai T, Mukai H, Yokota H, Yonezu T, Kuwabara S (2015) Putaminal hypointensity on T2*-weighted MR imaging is the most practically useful sign in diagnosing multiple system atrophy: a preliminary study. J Neurol Sci 349:174–178

    Article  PubMed  Google Scholar 

  263. Matsusue E, Fujii S, Kanasaki Y, Kaminou T, Ohama E, Ogawa T (2009) Cerebellar lesions in multiple system atrophy: postmortem MR imaging-pathologic correlations. AJNR Am J Neuroradiol 30:1725–1730

    Article  CAS  PubMed  Google Scholar 

  264. Visanji NP, Collingwood JF, Finnegan ME, Tandon A, House E, Hazrati LN (2013) Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson’s disease and multiple system atrophy. J Parkinsons Dis 3:523–537

    CAS  PubMed  Google Scholar 

  265. Benarroch EE, Schmeichel AM, Parisi JE, Low PA (2015) Putative neuropathological interactions in MSA: focus in the rostral ventrolateral medulla. Clin Auton Res 25:77–80

    Article  CAS  PubMed  Google Scholar 

  266. Tanji K, Odagiri S, Maruyama A, Mori F, Kakita A, Takahashi H, Wakabayashi K (2013) Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol Dis 49:190–198

    Article  CAS  PubMed  Google Scholar 

  267. Schwarz L, Goldbaum O, Bergmann M, Probst-Cousin S, Richter-Landsberg C (2012) Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J Mol Neurosci 47:256–266

    Article  CAS  PubMed  Google Scholar 

  268. Lee JH, Han YH, Kang BM, Mun CW, Lee SJ, Baik SK (2013) Quantitative assessment of subcortical atrophy and iron content in progressive supranuclear palsy and parkinsonian variant of multiple system atrophy. J Neurol 260:2094–2101

    Article  CAS  PubMed  Google Scholar 

  269. Han YH, Lee JH, Kang BM, Mun CW, Baik SK, Shin YI, Park KH (2013) Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci 325:29–35

    Article  CAS  PubMed  Google Scholar 

  270. Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J, Münchau A (2012) Brain iron deposition fingerprints in Parkinson’s disease and progressive supranuclear palsy. Mov Disord 27:421–427

    Article  PubMed  Google Scholar 

  271. Ebrahim AS, Kulathingal J, Murray ME, Casey-Castanedes M, Dickson DW, Yen SH, Sevlever D (2011) A proteomic study identifies different levels of light chain ferritin in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 122:727–736

    Article  CAS  PubMed  Google Scholar 

  272. Bras JM (2013) Lysosomal storage disorders and iron. Int Rev Neurobiol 110:251–275

    Article  CAS  PubMed  Google Scholar 

  273. Jeyakumar M, Williams I, Smith D, Cox TM, Platt FM (2009) Critical role of iron in the pathogenesis of the murine gangliosidoses. Neurobiol Dis 34:406–416

    Article  CAS  PubMed  Google Scholar 

  274. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Zanella.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasiotto, G., Di Lorenzo, D., Archetti, S. et al. Iron and Neurodegeneration: Is Ferritinophagy the Link?. Mol Neurobiol 53, 5542–5574 (2016). https://doi.org/10.1007/s12035-015-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9473-y

Keywords

Navigation