Skip to main content

Advertisement

Log in

Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Following peripheral nerve injury, hypoxia is formed as a result of defects in blood supply at the injury site. Despite accumulating evidence on the effects of microRNAs (miRNAs) on phenotype modulation of Schwann cells (SCs) after peripheral nerve injury, the impact of hypoxia on SC behaviors through miRNAs during peripheral nerve regeneration has not been estimated. In this study, we confirmed our previous microarray data on the upregulation of miR-132 after sciatic nerve injury in rats and observed that overexpression of miR-132 significantly promoted cell migration of primary cultured SCs. Interestingly, hypoxia-increased expression of miR-132 also enhanced SC migration while inhibition of miR-132 suppressed hypoxia-induced increase in SC migration. miR-132 downregulated PRKAG3 through binding to its 3′-UTR, and PRKAG3 knockdown compromised the reducing effect of miR-132 inhibition on SC migration under normal or hypoxia condition. Moreover, in vivo injection of miR-132 agomir into rats with sciatic nerve transection accelerated SC migration from the proximal to distal stump. Overall, our results suggest that the hypoxia-induced upregulation of miR-132 could promote SC migration and facilitate peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55. doi:10.3389/fphys.2013.00055

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gu X, Ding F, Yang Y, Liu J (2011) Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 93(2):204–230. doi:10.1016/j.pneurobio.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233. doi:10.1146/annurev.neuro.30.051606.094337

    Article  PubMed  Google Scholar 

  4. da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJA et al (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124(6):2560–2570. doi:10.1172/Jci72063

    Article  PubMed  PubMed Central  Google Scholar 

  5. Madduri S, Gander B (2010) Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst 15(2):93–103

    Article  CAS  PubMed  Google Scholar 

  6. Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23(6):1041–1048. doi:10.1016/j.conb.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  7. Heinen A, Lehmann HC, Kury P (2013) Negative regulators of Schwann cell differentiation-novel targets for peripheral nerve therapies? J Clin Immunol 33:S18–S26. doi:10.1007/s10875-012-9786-9

    Article  PubMed  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L (2010) Reduction of dicer impairs Schwann cell differentiation and myelination. J Neurosci Res 88(12):2558–2568. doi:10.1002/Jnr.22418

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dugas JC, Notterpek L (2011) MicroRNAs in oligodendrocyte and Schwann cell differentiation. Dev Neurosci 33(1):14–20. doi:10.1159/000323919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu B, Zhou SL, Wang YJ, Qian TM, Ding GH, Ding F, Gu XS (2012) miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 125(11):2675–2683. doi:10.1242/Jcs.098996

    Article  CAS  PubMed  Google Scholar 

  12. Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, Gu X (2012) miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40(20):10356–10365. doi:10.1093/nar/gks750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou SL, Gao R, Hu W, Qian TM, Wang N, Ding GH, Ding F, Yu B et al (2014) miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 127(5):967–976. doi:10.1242/Jcs.131672

    Article  CAS  PubMed  Google Scholar 

  14. Kenneth NS, Rocha S (2008) Regulation of gene expression by hypoxia. Biochem J 414:19–29. doi:10.1042/Bj20081055

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Del Villar K, Dong ZH, Miller CA (2004) Neurogenesis response to hypoxia-induced cell death: map kinase signal transduction mechanisms. Brain Res 1021(1):8–19. doi:10.1016/j.brainres.2004.05.115

    Article  Google Scholar 

  16. Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP (2009) Hypoxia and Neurodegeneration. Ann Ny Acad Sci 1177:169–177. doi:10.1111/j.1749-6632.2009.05026.x

  17. Zhu H, Li F, Yu WJ, Wang WJ, Li L, Wan LD, Le Y, Ding WL (2010) Effect of hypoxia/reoxygenation on cell viability and expression and secretion of neurotrophic factors (NTFs) in primary cultured Schwann cells. Anat Rec-Adv Integr Anat Evol Biol 293(5):865–870. doi:10.1002/Ar.21105

    Article  CAS  Google Scholar 

  18. Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28(45):11571–11582. doi:10.1523/JNEUROSCI.3053-08.2008

    Article  CAS  PubMed  Google Scholar 

  19. Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X (2011) Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 6(9):e24612. doi:10.1371/journal.pone.0024612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang X, Wang YJ, Zhou SL, Qian TM, Gu XS (2013) Signaling pathways regulating dose-dependent dual effects of TNF-alpha on primary cultured Schwann cells. Mol Cell Biochem 378(1-2):237–246. doi:10.1007/s11010-013-1614-x

    Article  CAS  PubMed  Google Scholar 

  21. Forciniti L, Ybarra J, Zaman MH, Schmidt CE (2014) Schwann cell response on polypyrrole substrates upon electrical stimulation. Acta Biomater 10(6):2423–2433. doi:10.1016/j.actbio.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  22. Chang YM, Chi WY, Lai TY, Chen YS, Tsai FJ, Tsai CH, Kuo WW, Cheng YC et al (2011) Dilong: role in peripheral nerve regeneration. Evid Based Complement Alternat Med 2011:380809. doi:10.1093/ecam/neq079

    PubMed  PubMed Central  Google Scholar 

  23. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102(45):16426–16431. doi:10.1073/pnas.0508448102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 105(26):9093–9098. doi:10.1073/pnas.0803072105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218(3):817–831. doi:10.1007/s00429-012-0431-4

    Article  PubMed  Google Scholar 

  26. Salta E, Lau P, Sala Frigerio C, Coolen M, Bally-Cuif L, De Strooper B (2014) A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation. Dev Cell 30(4):423–436. doi:10.1016/j.devcel.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  27. Gu XS, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156. doi:10.1016/j.biomaterials.2014.04.064

    Article  CAS  PubMed  Google Scholar 

  28. Hancock ML, Preitner N, Quan J, Flanagan JG (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 34(1):66–78. doi:10.1523/JNEUROSCI.3371-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Bio Med 64:20–30. doi:10.1016/j.freeradbiomed.2013.05.022

    Article  CAS  Google Scholar 

  30. Hu FH, Strittmatter SM (2004) Regulating axon growth within the postnatal central nervous system. Semin Perinatol 28(6):371–378. doi:10.1053/j.semperi.2004.10.001

    Article  PubMed  Google Scholar 

  31. Ma T, Wang YQ, Qi FY, Zhu S, Huang LL, Liu ZY, Huang JH, Luo ZJ (2013) The effect of synthetic oxygen carrier-enriched fibrin hydrogel on Schwann cells under hypoxia condition in vitro. Biomaterials 34(38):10016–10027. doi:10.1016/j.biomaterials.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  32. Impey S, Davare M, Lesiak A, Fortin D, Ando H, Varlamova O, Obrietan K, Soderling TR et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43(1):146–156. doi:10.1016/j.mcn.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  33. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288(5469):1248–1251

    Article  CAS  PubMed  Google Scholar 

  34. Ryan MT, Hamill RM, O’Halloran AM, Davey GC, McBryan J, Mullen AM, McGee C, Gispert M et al (2012) SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig. BMC Genet 13:66. doi:10.1186/1471-2156-13-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saxena NK, Sharma D (2010) Metastasis suppression by adiponectin: LKB1 rises up to the challenge. Cell Adh Migr 4(3):358–362

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cai XJ, Chen L, Li L, Feng M, Li X, Zhang K, Rong YY, Hu XB et al (2010) Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol Endocrinol 24(1):218–228. doi:10.1210/me.2009-0128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Jie Liu for assistance in manuscript preparation. This work was supported by the National Key Basic Research Program of China [2014CB542202], 863 Program [2012AA020502], National Natural Science Foundation of China [81130080, 31100761, and 31371062], New Century Excellent Talents in University [NCET-12-0742], Graduate Student Scientific and Innovation Research Program of Jiangsu Higher School [KYLX15_1329], and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosong Gu or Bin Yu.

Additional information

Chun Yao and Xiangxiang Shi contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 73 kb).

ESM 2

(DOC 39 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Shi, X., Zhang, Z. et al. Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Mol Neurobiol 53, 5129–5139 (2016). https://doi.org/10.1007/s12035-015-9449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9449-y

Keywords

Navigation