Skip to main content
Log in

The Roles of Genes in the Neuronal Migration and Neurite Outgrowth Network in Developmental Dyslexia: Single- and Multiple-Risk Genetic Variants

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Abnormal regulation of neural migration and neurite growth is thought to be an important feature of developmental dyslexia (DD). We investigated 16 genetic variants, selected by bioinformatics analyses, in six key genes in the neuronal migration and neurite outgrowth network in a Chinese population. We first observed that KIAA0319L rs28366021, KIAA0319 rs4504469, and DOCK4 rs2074130 were significantly associated with DD risk after false discovery rate (FDR) adjustment for multiple comparisons (odds ratio (OR) = 0.672, 95 % confidence interval (CI) = 0.505–0.894, P = 0.006; OR = 1.608, 95 % CI = 1.174–2.203, P = 0.003; OR = 1.681, 95 % CI = 1.203–2.348, P = 0.002). The following classification and regression tree (CART) analysis revealed a prediction value of gene-gene interactions among DOCK4 rs2074130, KIAA0319 rs4504469, DCDC2 rs2274305, and KIAA0319L rs28366021 variants. Compared with the lowest risk carriers of the combination of rs2074130 CC, rs4504469 CC, and rs2274305 GG genotype, individuals carrying the combined genotypes of rs2074130 CC, rs4504469 CT or TT, and rs28366021 GG had a significantly increased risk for DD (OR = 2.492, 95 % CI = 1.447–4.290, P = 0.001); individuals with the combination of rs2074130 CT or TT and rs28366021 GG genotype exhibited the highest risk for DD (OR = 2.770, 95 % CI = 2.265–6.276, P = 0.000). A significant dose effect was observed among these four variants (P for trend = 0.000). In summary, this study supports the importance of single- and multiple-risk variants in this network in DD susceptibility in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sun Z, Zou L, Zhang J et al (2013) Prevalence and associated risk factors of dyslexic children in a middle-sized city of China: a cross-sectional study. Plos One 8, e56688. doi:10.1371/journal.pone.0056688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chan DW, Ho CS, Sm T, Lee S, Chung KK (2007) Prevalence, gender ratio and gender differences in reading‐related cognitive abilities among Chinese children with dyslexia in Hong Kong. Educ Stud 33:249–265

    Article  Google Scholar 

  3. Ho CS-H, Chan DW-O, Lee S-H, Tsang S-M, Luan VH (2004) Cognitive profiling and preliminary subtyping in Chinese developmental dyslexia. Cognition 91:43–75

    Article  PubMed  Google Scholar 

  4. Chung KK, McBride-Chang C, Wong SW et al (2008) The role of visual and auditory temporal processing for Chinese children with developmental dyslexia. Ann Dyslexia 58:15–35

    Article  PubMed  Google Scholar 

  5. Chung KK, Ho CSH, Chan DW, Tsang SM, Lee SH (2010) Cognitive profiles of Chinese adolescents with dyslexia. Dyslexia 16:2–23

    Article  PubMed  Google Scholar 

  6. Francis DJ, Shaywitz SE, Stuebing KK, Shaywitz BA, Fletcher JM (1996) Developmental lag versus deficit models of reading disability: a longitudinal, individual growth curves analysis. J Educ Psychol 88:3–17

    Article  Google Scholar 

  7. Shaywitz SE, Shaywitz BA (2005) Dyslexia (specific reading disability). Biol Psychiat 57:1301–1309

    Article  PubMed  Google Scholar 

  8. Ritchie SJ, Bates TC (2013) Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychol Sci 24:1301–1308. doi:10.1177/0956797612466268

    Article  PubMed  Google Scholar 

  9. Richardson JT, Wydell TN (2003) The representation and attainment of students with dyslexia in UK higher education. Read Writ 16:475–503

    Article  Google Scholar 

  10. Gabel LA, Gibson CJ, Gruen JR, LoTurco JJ (2010) Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 38:173–180

    Article  CAS  PubMed  Google Scholar 

  11. Giraud A-L, Ramus F (2013) Neurogenetics and auditory processing in developmental dyslexia. Curr Opin Neurobiol 23:37–42

    Article  CAS  PubMed  Google Scholar 

  12. Davis OS, Band G, Pirinen M et al (2014) The correlation between reading and mathematics ability at age twelve has a substantial genetic component. Nat Commun 5:4204. doi:10.1038/ncomms5204

    PubMed Central  PubMed  Google Scholar 

  13. Grigorenko EL (2004) Genetic bases of developmental dyslexia: a capsule review of heritability estimates. Enfance 56:273–288

    Article  Google Scholar 

  14. Poelmans G, Buitelaar J, Pauls D, Franke B (2011) A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 16:365–382

    Article  CAS  PubMed  Google Scholar 

  15. Wigg KG, Couto JM, Feng Y et al (2004) Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol Psychiatry 9:1111–1121. doi:10.1038/sj.mp.4001543

    Article  CAS  PubMed  Google Scholar 

  16. Schumacher J, Anthoni H, Dahdouh F et al (2006) Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. Am J Hum Genet 78:52–62

    Article  CAS  PubMed  Google Scholar 

  17. Scerri TS, Morris AP, Buckingham LL et al (2011) DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biol Psychiatry 70:237–245. doi:10.1016/j.biopsych.2011.02.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mascheretti S, Riva V, Giorda R et al (2014) KIAA0319 and ROBO1: evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia. J Hum Genet 59:189–197. doi:10.1038/jhg.2013.141

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Paramasivam M, Thomas A et al (2006) DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience 143:515–522

    Article  CAS  PubMed  Google Scholar 

  20. Meng H, Smith SD, Hager K et al (2005) DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci U S A 102:17053–17058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Paracchini S, Thomas A, Castro S et al (2006) The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet 15:1659–1666

    Article  CAS  PubMed  Google Scholar 

  22. Hannula-Jouppi K, Kaminen-Ahola N, Taipale M et al (2005) The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 1, e50

    Article  PubMed Central  PubMed  Google Scholar 

  23. Andrews W, Liapi A, Plachez C et al (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252

    Article  CAS  PubMed  Google Scholar 

  24. Harold D, Paracchini S, Scerri T et al (2006) Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Mol Psychiatry 11:1085–1091

    Article  CAS  PubMed  Google Scholar 

  25. Elbert A, Lovett MW, Cate-Carter T et al (2011) Genetic variation in the KIAA0319 5' region as a possible contributor to dyslexia. Behav Genet 41:77–89. doi:10.1007/s10519-010-9434-1

    Article  PubMed  Google Scholar 

  26. Venkatesh SK, Siddaiah A, Padakannaya P, Ramachandra NB (2013) Analysis of genetic variants of dyslexia candidate genes KIAA0319 and DCDC2 in Indian population. J Hum Genet 58:531–538. doi:10.1038/jhg.2013.46

    Article  CAS  PubMed  Google Scholar 

  27. Zou L, Chen W, Shao S et al (2012) Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 159B:970–976. doi:10.1002/ajmg.b.32102

    Article  PubMed  Google Scholar 

  28. Sun Y, Gao Y, Zhou Y et al (2014) Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese population. Am J Med Genet B Neuropsychiatr Genet 165:627–634

    Article  CAS  Google Scholar 

  29. Kirsten H, Wilcke A, Ligges C, Boltze J, Ahnert P (2012) Association study of a functional genetic variant in KIAA0319 in German dyslexics. Psychiatr Genet 22:216–217. doi:10.1097/YPG.0b013e32834c0c97

    Article  PubMed  Google Scholar 

  30. Svidnicki MC, Salgado CA, Lima RF et al (2013) Study of candidate genes for dyslexia in Brazilian individuals. Genet Mol Res 12:5356–5364. doi:10.4238/2013.November.7.10

    Article  CAS  PubMed  Google Scholar 

  31. Zhong R, Yang B, Tang H et al (2013) Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia. Mol Neurobiol 47:435–442. doi:10.1007/s12035-012-8381-7

    Article  CAS  PubMed  Google Scholar 

  32. Pagnamenta AT, Bacchelli E, de Jonge MV et al (2010) Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol Psychiatry 68:320–328. doi:10.1016/j.biopsych.2010.02.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Couto JM, Gomez L, Wigg K et al (2008) The KIAA0319-like (KIAA0319L) gene on chromosome 1p34 as a candidate for reading disabilities. J Neurogenet 22:295–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Poon MW, Tsang WH, Chan SO et al (2011) Dyslexia-associated kiaa0319-like protein interacts with axon guidance receptor nogo receptor 1. Cell Mol Neurobiol 31:27–35. doi:10.1007/s10571-010-9549-1

    Article  CAS  PubMed  Google Scholar 

  35. Ueda S, Negishi M, Katoh H (2013) Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation. Mol Biol Cell 24:1602–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H (2008) Dock4 regulates dendritic development in hippocampal neurons. J Neurosci Res 86:3052–3061. doi:10.1002/jnr.21763

    Article  CAS  PubMed  Google Scholar 

  37. Biernacka JM, Jenkins GD, Wang L, Moyer AM, Fridley BL (2012) Use of the gamma method for self-contained gene-set analysis of SNP data. Eur J Hum Genet 20:565–571. doi:10.1038/ejhg.2011.236

    Article  CAS  PubMed  Google Scholar 

  38. Winham SJ, Biernacka JM (2013) Gene-environment interactions in genome-wide association studies: current approaches and new directions. J Child Psychol Psychiatry 54:1120–1134. doi:10.1111/jcpp.12114

    Article  PubMed  Google Scholar 

  39. He Z, Shao S, Zhou J et al (2014) Does long time spending on the electronic devices affect the reading abilities? A cross-sectional study among Chinese school-aged children. Res Dev Disabil 35:3645–3654

    Article  PubMed  Google Scholar 

  40. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B:289-300

  41. García-Closas M, Lubin JH (1999) Power and sample size calculations in case-control studies of gene-environment interactions: comments on different approaches. Am J Epidemiol 149:689–692

    Article  PubMed  Google Scholar 

  42. Liu L, Wu J, Zhong R et al (2013) Multi-loci analysis reveals the importance of genetic variations in sensitivity of platinum-based chemotherapy in non-small-cell lung cancer. Mol Carcinog 52:923–931. doi:10.1002/mc.21942

    Article  CAS  PubMed  Google Scholar 

  43. Cook NR, Zee RY, Ridker PM (2004) Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 23:1439–1453. doi:10.1002/sim.1749

    Article  PubMed  Google Scholar 

  44. Boets B, Op de Beeck HP, Vandermosten M et al (2013) Intact but less accessible phonetic representations in adults with dyslexia. Science 342:1251–1254. doi:10.1126/science.1244333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Finn ES, Shen X, Holahan JM et al (2014) Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biol Psychiatry 76:397–404. doi:10.1016/j.biopsych.2013.08.031

    Article  PubMed  Google Scholar 

  46. Cope N, Harold D, Hill G et al (2005) Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am J Hum Genet 76:581–591. doi:10.1086/429131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Francks C, Paracchini S, Smith SD et al (2004) A 77-kilobase region of chromosome 6p22. 2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 75:1046–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Platt MP, Adler WT, Mehlhorn AJ et al (2013) Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders. Neuroscience 248:585–593. doi:10.1016/j.neuroscience.2013.06.056

    Article  CAS  PubMed  Google Scholar 

  49. Xiao Y, Peng Y, Wan J et al (2013) The atypical guanine nucleotide exchange factor Dock4 regulates neurite differentiation through modulation of Rac1 GTPase and actin dynamics. J Biol Chem 288:20034–20045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Thorpe K, Rutter M, Greenwood R (2003) Twins as a natural experiment to study the causes of mild language delay: II: Family interaction risk factors. J Child Psychol Psyc 44:342–355

    Article  Google Scholar 

  51. McGrath LM, Pennington BF, Willcutt EG et al (2007) Gene × environment interactions in speech sound disorder predict language and preliteracy outcomes. Dev Psychopathol 19:1047–1072

    Article  PubMed  Google Scholar 

  52. Rosenberg J, Pennington BF, Willcutt EG, Olson RK (2012) Gene by environment interactions influencing reading disability and the inattentive symptom dimension of attention deficit/hyperactivity disorder. J Child Psychol Psyc 53:243–251

    Article  Google Scholar 

  53. Friend A, DeFries JC, Olson RK (2008) Parental education moderates genetic influences on reading disability. Psychol Sci 19:1124–1130. doi:10.1111/j.1467-9280.2008.02213.x

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lim CK, Wong AM, Ho CS, Waye MM (2014) A common haplotype of KIAA0319 contributes to the phonological awareness skill in Chinese children. Behav Brain Funct 10:23. doi:10.1186/1744-9081-10-23

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China NSFC-81273092; the Fundamental Research Funds for the Central Universities (HUST: 2014TS053); and project from Health and Family Planning Commission of Hubei Province (WJ2015MB019).

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranran Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Kong, R., Zou, L. et al. The Roles of Genes in the Neuronal Migration and Neurite Outgrowth Network in Developmental Dyslexia: Single- and Multiple-Risk Genetic Variants. Mol Neurobiol 53, 3967–3975 (2016). https://doi.org/10.1007/s12035-015-9334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9334-8

Keywords

Navigation