Skip to main content

Advertisement

Log in

Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Preston E, Webster J, Small D (2001) Characteristics of sustained blood-brain barrier opening and tissue injury in a model for focal trauma in the rat. J Neurotrauma 18(1):83–92

    Article  CAS  PubMed  Google Scholar 

  2. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23(2):297–308

    Article  CAS  PubMed  Google Scholar 

  3. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci : Off J Soc Neurosci 24(9):2143–2155

    Article  CAS  Google Scholar 

  4. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301

    Article  CAS  PubMed  Google Scholar 

  5. Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C (2011) Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. J Neurotrauma 28(6):1089–1100

    Article  PubMed  Google Scholar 

  6. Wang XF, Huang LD, Yu PP, Hu JG, Yin L, Wang L, Xu XM, Lu PH (2006) Upregulation of type I interleukin-1 receptor after traumatic spinal cord injury in adult rats. Acta Neuropathol 111(3):220–228

    Article  CAS  PubMed  Google Scholar 

  7. Ishii S, Shimizu T (2000) Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 39(1):41–82

    Article  CAS  PubMed  Google Scholar 

  8. Yue TL, Feuerstein GZ (1994) Platelet-activating factor: a putative neuromodulator and mediator in the pathophysiology of brain injury. Crit Rev Neurobiol 8(1–2):11–24

    CAS  PubMed  Google Scholar 

  9. Kumar R, Harvey SA, Kester M, Hanahan DJ, Olson MS (1988) Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta 963(2):375–383

    Article  CAS  PubMed  Google Scholar 

  10. Sogos V, Bussolino F, Pilia E, Torelli S, Gremo F (1990) Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J Neurosci Res 27(4):706–711

    Article  CAS  PubMed  Google Scholar 

  11. Bito H, Nakamura M, Honda Z, Izumi T, Iwatsubo T, Seyama Y, Ogura A, Kudo Y et al (1992) Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 9(2):285–294

    Article  CAS  PubMed  Google Scholar 

  12. Brodie C (1994) Functional PAF receptors in glia cells: binding parameters and regulation of expression. Int J Dev Neurosci : Off J Int Soc Dev Neurosci 12(7):631–640

    Article  CAS  Google Scholar 

  13. Hostettler ME, Knapp PE, Carlson SL (2002) Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes: involvement of caspase-3. Glia 38(3):228–239

    Article  PubMed  Google Scholar 

  14. Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T (1996) Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci : Off J Soc Neurosci 16(11):3590–3600

    CAS  Google Scholar 

  15. Bozlu G, Atici A, Turhan AH, Polat A, Nayci A, Okuyaz C, Taskinlar H (2007) Platelet-activating factor antagonist (ABT-491) decreases neuronal apoptosis in neonatal rat model of hypoxic ischemic brain injury. Brain Res 1143:193–198

    Article  CAS  PubMed  Google Scholar 

  16. Row BW, Kheirandish L, Li RC, Guo SZ, Brittian KR, Hardy M, Bazan NG, Gozal D (2004) Platelet-activating factor receptor-deficient mice are protected from experimental sleep apnea-induced learning deficits. J Neurochem 89(1):189–196

    Article  CAS  PubMed  Google Scholar 

  17. Brochet B, Guinot P, Orgogozo JM, Confavreux C, Rumbach L, Lavergne V (1995) Double blind placebo controlled multicentre study of ginkgolide B in treatment of acute exacerbations of multiple sclerosis. The Ginkgolide Study Group in multiple sclerosis. J Neurol Neurosurg Psychiatry 58(3):360–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hostettler ME, Carlson SL (2002) PAF antagonist treatment reduces pro-inflammatory cytokine mRNA after spinal cord injury. Neuroreport 13(1):21–24

    Article  CAS  PubMed  Google Scholar 

  19. Lindsberg PJ, Jacobs TP, Paakkari IA, Hallenbeck JM, Feuerstein G (1990) Effect of systemic platelet-activating factor (PAF) on the rabbit spinal cord microcirculation. J Lipid Mediat 2(1):41–58

    CAS  PubMed  Google Scholar 

  20. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59(4):606–619

    Article  CAS  PubMed  Google Scholar 

  21. Liu NK, Xu XM (2010) Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol 41(2–3):197–205

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Wang Z, Lin A, Li S, Wen F, Yao H (2011) Effect of buying huanwu decoction on the content of platelet activating factor in spinal cord tissue of rats with spinal cord injury. Chin J Inf TCM 18(11):46–48

    Google Scholar 

  23. Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K et al (1998) Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 187(11):1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang YP, Iannotti C, Shields LB, Han Y, Burke DA, Xu XM, Shields CB (2004) Dural closure, cord approximation, and clot removal: enhancement of tissue sparing in a novel laceration spinal cord injury model. J Neurosurg 100(4 Suppl Spine):343–352

    PubMed  Google Scholar 

  25. Yu P, Zhang YP, Shields LB, Zheng Y, Hu X, Hill R, Howard R, Gu Z et al (2011) Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Exp Neurol 231(1):38–44

    Article  CAS  PubMed  Google Scholar 

  26. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, Danias J, Bronstein JM et al (1999) CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99(6):649–659

    Article  CAS  PubMed  Google Scholar 

  27. Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S et al (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185

    Article  PubMed  Google Scholar 

  28. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1):41–53

    Article  CAS  PubMed  Google Scholar 

  29. Cai J, Zhu Q, Zheng K, Li H, Qi Y, Cao Q, Qiu M (2010) Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 58(4):458–468

    PubMed  PubMed Central  Google Scholar 

  30. Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D (2012) Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 226(3):495–508

    Article  CAS  PubMed  Google Scholar 

  31. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294(1):1–9

    Article  CAS  PubMed  Google Scholar 

  32. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU et al (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20(7):2427–2438

    CAS  PubMed  Google Scholar 

  33. Gutowski NJ, Newcombe J, Cuzner ML (1999) Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathol Appl Neurobiol 25(3):207–214

    Article  CAS  PubMed  Google Scholar 

  34. Cafferty WBJ, Yang S-H, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27(9):2176–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J (2009) Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J Neurotrauma 26(1):41–53

    Article  PubMed  Google Scholar 

  36. Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, Suh-Kim H, Kim BG (2012) Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 233(1):312–322

    Article  CAS  PubMed  Google Scholar 

  37. Menet V, Prieto M, Privat A, Ribotta MGY (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci 100(15):8999–9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68(3):451–463

    Article  PubMed  Google Scholar 

  39. Hsieh ST, Kidd GJ, Crawford TO, Xu Z, Lin WM, Trapp BD, Cleveland DW, Griffin JW (1994) Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci : Off J Soc Neurosci 14(11 Pt 1):6392–6401

    CAS  Google Scholar 

  40. Nixon RA, Paskevich PA, Sihag RK, Thayer CY (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 126(4):1031–1046

    Article  CAS  PubMed  Google Scholar 

  41. Maclennan KM, Darlington CL, Smith PF (2002) The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 67(3):235–257

    Article  CAS  PubMed  Google Scholar 

  42. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65(7):1035–1041

    Article  CAS  PubMed  Google Scholar 

  43. Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields C, Cai J (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 48(3):690–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maclennan KM, Smith PF, Darlington CL (1996) Platelet-activating factor in the CNS. Prog Neurobiol 50(5–6):585–596

    Article  CAS  PubMed  Google Scholar 

  45. Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92(3):1061–1077

    Article  CAS  PubMed  Google Scholar 

  46. Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258(3):139–142

    Article  CAS  PubMed  Google Scholar 

  47. Ong WY, Horrocks LA, Farooqui AA (1999) Immunocytochemical localization of cPLA2 in rat and monkey spinal cord. J Mol Neurosci 12(2):123–130

    Article  CAS  PubMed  Google Scholar 

  48. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12(3):245–260

    Article  CAS  PubMed  Google Scholar 

  49. Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272(27):16709–16712

    Article  CAS  PubMed  Google Scholar 

  50. Liu N-K, Deng L-X, Zhang YP, Lu Q-B, Wang X-F, Hu J-G, Oakes E, Bonventre JV et al (2014) Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 75(5):644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Flaherty JT, Chabot MC, Redman J Jr, Jacobson D, Wykle RL (1989) Receptor-independent metabolism of platelet-activating factor by myelogenous cells. FEBS Lett 250(2):341–344

    Article  PubMed  Google Scholar 

  52. Ryan SD, Harris CS, Mo F, Lee H, Hou ST, Bazan NG, Haddad PS, Arnason JT et al (2007) Platelet activating factor-induced neuronal apoptosis is initiated independently of its G-protein coupled PAF receptor and is inhibited by the benzoate orsellinic acid. J Neurochem 103(1):88–97

    CAS  PubMed  Google Scholar 

  53. Stoll LL, Denning GM, Kasner NA, Hunninghake GW (1994) Platelet-activating factor may stimulate both receptor-dependent and receptor-independent increases in [Ca2+] in human airway epithelial cells. J Biol Chem 269(6):4254–4259

    CAS  PubMed  Google Scholar 

  54. Sobani ZA, Quadri SA, Enam SA (2010) Stem cells for spinal cord regeneration: current status. Surg Neurol Int 1:93

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bennett SAL, Chen J, Pappas BA, Roberts DCS, Tenniswood M (1998) Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Cell Death Differ 5(10):867–875

    Article  CAS  PubMed  Google Scholar 

  56. Kim BK, Shin EJ, Kim HC, Chung YH, Dang DK, Jung BD, Park DH, Wie MB et al (2013) Platelet-activating factor receptor knockout mice are protected from MPTP-induced dopaminergic degeneration. Neurochem Int 63(3):121–132

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Bekar LK, Furber K, Walz W (2004) Vimentin-expressing proximal reactive astrocytes correlate with migration rather than proliferation following focal brain injury. Brain Res 1024(1–2):193–202

    Article  CAS  PubMed  Google Scholar 

  58. Frisen J, Johansson CB, Torok C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131(2):453–464

    Article  CAS  PubMed  Google Scholar 

  59. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7(4):470–482

    Article  CAS  PubMed  Google Scholar 

  60. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7), e182

    Article  PubMed  PubMed Central  Google Scholar 

  61. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17(1):120–127

    Article  CAS  PubMed  Google Scholar 

  62. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  CAS  PubMed  Google Scholar 

  63. Rohl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129(1):43–52

    Article  PubMed  Google Scholar 

  64. Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995) Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61(1):71–78

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura M, Okada S, Toyama Y, Okano H (2005) Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol 28(3):197–204

    Article  CAS  PubMed  Google Scholar 

  66. Norris JG, Tang LP, Sparacio SM, Benveniste EN (1994) Signal transduction pathways mediating astrocyte IL-6 induction by IL-1 beta and tumor necrosis factor-alpha. J Immunol 152(2):841–850

    CAS  PubMed  Google Scholar 

  67. Sawada M, Itoh Y, Suzumura A, Marunouchi T (1993) Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett 160(2):131–134

    Article  CAS  PubMed  Google Scholar 

  68. Brunello AG, Weissenberger J, Kappeler A, Vallan C, Peters M, Rose-John S, Weis J (2000) Astrocytic alterations in interleukin-6/Soluble interleukin-6 receptor alpha double-transgenic mice. Am J Pathol 157(5):1485–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Klein MA, Moller JC, Jones LL, Bluethmann H, Kreutzberg GW, Raivich G (1997) Impaired neuroglial activation in interleukin-6 deficient mice. Glia 19(3):227–233

    Article  CAS  PubMed  Google Scholar 

  70. Song Y, Zeng Z, Jin C, Zhang J, Ding B, Zhang F (2013) Protective effect of ginkgolide B against acute spinal cord injury in rats and its correlation with the JAK/STAT signaling pathway. Neurochem Res 38(3):610–619

    Article  CAS  PubMed  Google Scholar 

  71. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  72. Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9(3–4):259–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by pilot grants of NIH (P30 GM103507-04) and Department of Pediatrics, NSFC (81400998), NSFC (81360195), State Key Program of NSFC (81330042), Sino-Russian Joint Research Program of MSTC (2014DFR31210), Key Program of Tianjin STCC (13RCGFSY19000, 14ZCZDSY00044), and CSC scholarship. The authors would like to thank Dr. Theo Hagg for his critical comments on experimental design.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingsan Zhu or Jun Cai.

Additional information

Yuanyi Wang, Zhongwen Gao and Yiping Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, Z., Zhang, Y. et al. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor. Mol Neurobiol 53, 3448–3461 (2016). https://doi.org/10.1007/s12035-015-9263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9263-6

Keywords

Navigation