Skip to main content

Advertisement

Log in

Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Endothelin1 (ET1) is a potent vasoconstrictor that is also known to be a neuropeptide that is involved in neural circuits. We examined the role of ET1 that has been implicated in the anxiogenic process. We found that infusing ET1 into the IL cortex increased anxiety-like behaviors. The ETA receptor (ETAR) antagonist (BQ123) but not the ETB receptor (ETBR) antagonist (BQ788) alleviated ET1-induced anxiety. ET1 had no effect on GABAergic neurotransmission or NMDA receptor (NMDAR)-mediated neurotransmission, but increased AMPA receptor (AMPAR)-mediated excitatory synaptic transmission. The changes in AMPAR-mediated excitatory postsynaptic currents were due to presynaptic mechanisms. Finally, we found that the AMPAR antagonists (CNQX) and BQ123 reversed ET1’s anxiogenic effect, with parallel and corresponding electrophysiological changes. Moreover, infusing CNQX + BQ123 into the IL had no additional anxiolytic effect compared to CNQX treatment alone. Altogether, our findings establish a previously unknown anxiogenic action of ET1 in the IL cortex. AMPAR-mediated glutamatergic neurotransmission may underlie the mechanism of ET1-ETAR signaling pathway in the regulation of anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnson NJ, Rodgers RJ (1996) Ethological analysis of cholecystokinin (CCKA and CCKB) receptor ligands in the elevated plus-maze test of anxiety in mice. Psychopharmacology 124(4):355–364

    Article  CAS  PubMed  Google Scholar 

  2. Bishop S, Duncan J, Brett M, Lawrence AD (2004) Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7(2):184–188. doi:10.1038/nn1173

    Article  CAS  PubMed  Google Scholar 

  3. Radley JJ, Arias CM, Sawchenko PE (2006) Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26(50):12967–12976. doi:10.1523/JNEUROSCI. 4297-06.2006

    Article  CAS  PubMed  Google Scholar 

  4. Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33(6):773–783. doi:10.1016/j.neubiorev.2008.11.005

    Article  PubMed  Google Scholar 

  5. Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35(1):169–191. doi:10.1038/npp.2009.83

    Article  PubMed  Google Scholar 

  6. Chan T, Kyere K, Davis BR, Shemyakin A, Kabitzke PA, Shair HN, Barr GA, Wiedenmayer CP (2011) The role of the medial prefrontal cortex in innate fear regulation in infants, juveniles, and adolescents. J Neurosci 31(13):4991–4999. doi:10.1523/JNEUROSCI.5216-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burghy CA, Stodola DE, Ruttle PL, Molloy EK, Armstrong JM, Oler JA, Fox ME, Hayes AS et al (2012) Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nat Neurosci 15(12):1736–1741. doi:10.1038/nn.3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bi LL, Wang J, Luo ZY, Chen SP, Geng F, Chen YH, Li SJ, Yuan CH et al (2013) Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology 72:148–156. doi:10.1016/j.neuropharm.2013.04.048

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin KJ, Baran SE, Conrad CD (2009) Chronic stress- and sex-specific neuromorphological and functional changes in limbic structures. Mol Neurobiol 40(2):166–182. doi:10.1007/s12035-009-8079-7

    Article  CAS  PubMed  Google Scholar 

  10. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538. doi:10.1038/npp.2010.184

    Article  PubMed  Google Scholar 

  11. Lacroix L, Spinelli S, Heidbreder CA, Feldon J (2000) Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav Neurosci 114(6):1119–1130

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan RM, Gratton A (2002) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 927(1):69–79

    Article  CAS  PubMed  Google Scholar 

  13. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415. doi:10.1038/332411a0

    Article  CAS  PubMed  Google Scholar 

  14. Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P (2000) Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci U S A 97(7):3479–3484. doi:10.1073/pnas.050420897

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Aleyasin H, Rousseaux MW, Phillips M, Kim RH, Bland RJ, Callaghan S, Slack RS, During MJ et al (2007) The Parkinson's disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci U S A 104(47):18748–18753. doi:10.1073/pnas.0709379104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yasuno K, Bakircioglu M, Low SK, Bilguvar K, Gaal E, Ruigrok YM, Niemela M, Hata A, Bijlenga P, Kasuya H, Jaaskelainen JE, Krex D, Auburger G, Simon M, Krischek B, Ozturk AK, Mane S, Rinkel GJ, Steinmetz H, Hernesniemi J, Schaller K, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2011) Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A 108 (49):19707-19712. doi:10.1073/pnas.1117137108

  17. Dashwood MR, Loesch A (2010) Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects? J Cell Commun Signal 4(1):51–62. doi:10.1007/s12079-009-0073-3

    Article  PubMed  Google Scholar 

  18. Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou NA, Yeh I, Jokerst NM, Fuchs E, Steinhoff M, Liedtke WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 110 (34):E3225-3234. doi:10.1073/pnas.1312933110

  19. Webb DJ, Monge JC, Rabelink TJ, Yanagisawa M (1998) Endothelin: new discoveries and rapid progress in the clinic. Trends Pharmacol Sci 19(1):5–8. doi:10.1016/S0165-6147(97)01144-9

    Article  PubMed  Google Scholar 

  20. Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46(3):325–415

    CAS  PubMed  Google Scholar 

  21. Levin ER (1995) Endothelins. N Engl J Med 333(6):356–363. doi:10.1056/NEJM199508103330607

    Article  CAS  PubMed  Google Scholar 

  22. Kurihara Y, Kurihara H, Morita H, Cao WH, Ling GY, Kumada M, Kimura S, Nagai R et al (2000) Role of endothelin-1 in stress response in the central nervous system. Am J Physiol Regul Integr Comp Physiol 279(2):R515–R521

    CAS  PubMed  Google Scholar 

  23. Zhang X, Yeung PK, McAlonan GM, Chung SS, Chung SK (2013) Transgenic mice over-expressing endothelial endothelin-1 show cognitive deficit with blood-brain barrier breakdown after transient ischemia with long-term reperfusion. Neurobiol Learn Mem 101:46–54. doi:10.1016/j.nlm.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  24. Zampronio AR, Kuzmiski JB, Florence CM, Mulligan SJ, Pittman QJ (2010) Opposing actions of endothelin-1 on glutamatergic transmission onto vasopressin and oxytocin neurons in the supraoptic nucleus. J Neurosci 30(50):16855–16863. doi:10.1523/JNEUROSCI.5079-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X et al (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30(38)):12653–12663. doi:10.1523/JNEUROSCI.6414-09.2010

    Article  CAS  PubMed  Google Scholar 

  26. Corcoran KA, Donnan MD, Tronson NC, Guzman YF, Gao C, Jovasevic V, Guedea AL, Radulovic J (2011) NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J Neurosci 31(32):11655–11659. doi:10.1523/JNEUROSCI.2107-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanders SK, Shekhar A (1995) Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol Biochem Behav 52(4):701–706. doi:10.1016/0091-3057(95)00153-N

    Article  CAS  PubMed  Google Scholar 

  28. Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020. doi:10.1126/science.1172545

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25(38):8725–8734. doi:10.1523/JNEUROSCI. 2260-05.2005

    Article  PubMed  Google Scholar 

  30. Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22(1):324–337

    CAS  PubMed  Google Scholar 

  31. Huff NC, Rudy JW (2004) The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav Neurosci 118(1):53–62. doi:10.1037/0735-7044.118.1.53

    Article  PubMed  Google Scholar 

  32. Stern CA, Do Monte FH, Gazarini L, Carobrez AP, Bertoglio LJ (2010) Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience 170(1):214–222. doi:10.1016/j.neuroscience.2010.06.080

    Article  CAS  PubMed  Google Scholar 

  33. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P, Lu YS, Zhu XH et al (2010) ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci U S A 107(50):21818–21823. doi:10.1073/pnas.1010669107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu B, Herbert J (1996) Behavioural, autonomic and endocrine responses associated with C-fos expression in the forebrain and brainstem after intracerebroventricular infusions of endothelins. Neuroscience 71(4):1049–1062. doi:10.1016/0306-4522(95)00512-9

    Article  CAS  PubMed  Google Scholar 

  35. Castillo CS, Starkstein SE, Fedoroff JP, Price TR, Robinson RG (1993) Generalized anxiety disorder after stroke. J Nerv Ment Dis 181(2):100–106

    Article  CAS  PubMed  Google Scholar 

  36. Astrom M (1996) Generalized anxiety disorder in stroke patients. A 3-year longitudinal study. Stroke 27(2):270–275

    Article  CAS  PubMed  Google Scholar 

  37. McCoy KJ (2006) Patient page. Even a minor stroke might lead to stress and anxiety. Neurology 66(4):E15–E16. doi:10.1212/01.wnl.0000203810.16277.32

    Article  PubMed  Google Scholar 

  38. Eggers AE (2005) A chronic dysfunctional stress response can cause stroke by stimulating platelet activation, migraine, and hypertension. Med Hypotheses 65(3):542–545. doi:10.1016/j.mehy.2005.03.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (81200119, 81130079, 91232302, 81200863), a grant from the Fundamental Research Funds for the Central Universities (2015TS126), a grant from the Fundamental Research Funds for the Central Universities (121007), a grant from the China Postdoctoral Science Foundation Grant (2014 M552046), and a grant from Postdoctoral Science Foundation of Huazhong University of Science and Technology (2014).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Lin Bi or You-Ming Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, LL., Chen, M., Pei, L. et al. Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Mol Neurobiol 53, 2054–2064 (2016). https://doi.org/10.1007/s12035-015-9163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9163-9

Keywords

Navigation