Skip to main content

Advertisement

Log in

Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The effects of Korean red ginseng extract (KRGE) on autoimmune disorders of the nervous system are not clear. We investigated whether KRGE has a beneficial effect on acute and chronic experimental autoimmune encephalomyelitis (EAE). Pretreatment (daily from 10 days before immunization with myelin basic protein peptide) with KRGE significantly attenuated clinical signs and loss of body weight and was associated with the suppression of spinal demyelination and glial activation in acute EAE rats, while onset treatment (daily after the appearance of clinical symptoms) did not. The suppressive effect of KRGE corresponded to the messenger RNA (mRNA) expression of proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin [IL]-1β), chemokines (RANTES, monocyte chemotactic protein-1 [MCP-1], and macrophage inflammatory protein-1α [MIP-1α]), adhesion molecules (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], and platelet endothelial cell adhesion molecule [PECAM-1]), and inducible nitric oxide synthase in the spinal cord after immunization. Interestingly, in acute EAE rats, pretreatment with KRGE significantly reduced the population of CD4+, CD4+/IFN-γ+, and CD4+/IL-17+ T cells in the spinal cord and lymph nodes, corresponding to the downregulation of mRNA expression of IFN-γ, IL-17, and IL-23 in the spinal cord. On the other hand, KRGE pretreatment increased the population of CD4+/Foxp3+ T cells in the spinal cord and lymph nodes of these rats, corresponding to the upregulation of mRNA expression of Foxp3 in the spinal cord. Interestingly, intrathecal pretreatment of rats with ginsenosides (Rg1 and Rb1) significantly decreased behavioral impairment. These results strongly indicate that KRGE has a beneficial effect on the development and progression of EAE by suppressing T helper 1 (Th1) and Th17 T cells and upregulating regulatory T cells. Additionally, pre- and onset treatment with KRGE alleviated neurological impairment of myelin oligodendrocyte glycoprotein35–55-induced mouse model of chronic EAE. These results warrant further investigation of KRGE as preventive or therapeutic strategies for autoimmune disorders, such as multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

APG:

Acidic polysaccharide of Panax ginseng

BBB:

Blood–brain barrier

CNS:

Central nervous system

EAE:

Experimental autoimmune encephalomyelitis

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

HRP:

Horseradish peroxidase

Iba-1:

Anti-ionized calcium binding adaptor molecule-1

ICAM-1:

Intercellular adhesion molecule-1

IFN-β:

Interferon beta

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

KRGE:

Korean red ginseng extract

MBP:

Myelin basic protein

MS:

Multiple sclerosis

MCP-1:

Monocyte chemotactic protein-1

MIP-1α:

Macrophage inflammatory protein-1α

PDGFαR:

Platelet-derived growth factor

PTX:

Pertussis toxin

TCR:

T cell receptor

Th1:

T helper 1

Th2:

T helper 2

TNF-α:

Tumor necrosis factor-α

Tregs:

Regulatory T cells

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585:3715–3723

    Article  CAS  PubMed  Google Scholar 

  2. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  CAS  PubMed  Google Scholar 

  3. Ragheb S, Lisak R (1993) Multiple sclerosis: genetic background versus environment. Ann Neurol 34:509–510

    Article  CAS  PubMed  Google Scholar 

  4. Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, Andreoni L, Trivedi P et al (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204:2899–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33:579–589

    Article  CAS  PubMed  Google Scholar 

  6. Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK (2012) Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin Dev Immunol 2012:970789

    PubMed  Google Scholar 

  7. Cuzzola VF, Palella E, Celi D, Barresi M, Giacoppo S, Bramanti P, Marino S (2012) Pharmacogenomic update on multiple sclerosis: a focus on actual and new therapeutic strategies. Pharmacogenomics J 12:453–461

    Article  Google Scholar 

  8. Neilley LK, Goodin DS, Goodkin DE, Hauser SL (1996) Side effect profile of interferon beta-1b in MS: results of an open label trial. Neurology 46:552–554

    Article  CAS  PubMed  Google Scholar 

  9. Gasperini C, Ruggieri S (2009) New oral drugs for multiple sclerosis. Neurol Sci 30(Suppl 2):S179–S183

    Article  PubMed  Google Scholar 

  10. Minagar A (2013) Current and future therapies for multiple sclerosis. Scientifica 2013:249101

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cho I (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T (1963) Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 11:759–761

    Article  CAS  Google Scholar 

  13. Kaneko H, Nakanishi K (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: clinical effects of medical ginseng, Korean red ginseng: specifically, its anti-stress action for prevention of disease. J Pharmacol Sci 95:158–162

    Article  CAS  PubMed  Google Scholar 

  14. Karmazyn M, Moey M, Gan XT (2011) Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs

  15. Kim HJ, Kim P, Shin CY (2013) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 37(1):8–29

  16. Lee MS, Yang EJ, Kim JI, Ernst E (2009) Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J Alzheimers Dis 18:339–344

    Article  PubMed  Google Scholar 

  17. Van Kampen J, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 184:521–529

    Article  PubMed  Google Scholar 

  18. Jang M, Lee MJ, Kim CS, Cho IH (2013) Korean Red Ginseng Extract attenuates 3-nitropropionic acid-induced Huntington’s-like symptoms. Evid Based Complement Alternat Med 2013:237207

    PubMed  PubMed Central  Google Scholar 

  19. Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y (2011) An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 138:169–178

    Article  CAS  PubMed  Google Scholar 

  20. Hwang I, Ha D, Ahn G, Park E, Joo H, Jee Y (2011) Experimental autoimmune encephalomyelitis: association with mutual regulation of RelA (p65)/NF-kappaB and phospho-IkappaB in the CNS. Biochem Biophys Res Commun 411:464–470

    Article  CAS  PubMed  Google Scholar 

  21. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21

    Article  CAS  PubMed  Google Scholar 

  22. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Administration, K.F.a.D. (2007) Korea Food and Drug Administration. Korea Food Code. Mun-young Publishing Co., Seoul

    Google Scholar 

  24. Lee MJ, Jang M, Jung HS, Kim SH, Cho IH (2012) Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation. Mol Pain 8:40

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oyagi A, Ogawa K, Kakino M, Hara H (2010) Protective effects of a gastrointestinal agent containing Korean red ginseng on gastric ulcer models in mice. BMC Complement Altern Med 10:45

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, Kim JI, Jee Y, Chae Y, Kim SH, Lee SJ, Cho IH (2015) Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol Neurobiol

  27. Jang M, Lee MJ, Cho IH (2014) Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain Behav Immun 38:151–165

    Article  CAS  PubMed  Google Scholar 

  28. Fissolo N, Costa C, Nurtdinov RN, Bustamante MF, Llombart V, Mansilla MJ, Espejo C, Montalban X et al (2012) Treatment with MOG-DNA vaccines induces CD4 + CD25 + FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. J Neuroinflammation 9:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piao ZG, Cho IH, Park CK, Hong JP, Choi SY, Lee SJ, Lee S, Park K et al (2006) Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain 121:219–231

    Article  CAS  PubMed  Google Scholar 

  30. VanGuilder HD, Bixler GV, Brucklacher RM, Farley JA, Yan H, Warrington JP, Sonntag WE, Freeman WM (2011) Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J Neuroinflammation 8:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH et al (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131:3019–3033

    Article  PubMed  PubMed Central  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  33. Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, Choi SY, Kim CH et al (2011) Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem 285:39447–39457

    Article  Google Scholar 

  34. Fujita H, Nograles KE, Kikuchi T, Gonzalez J, Carucci JA, Krueger JG (2009) Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci U S A 106:21795–21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88:7438–7442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, Huang Q, Pi R et al (2014) Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 92:1217–1226

    Article  CAS  PubMed  Google Scholar 

  37. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim JH, Kim S, Yoon IS, Lee JH, Jang BJ, Jeong SM, Lee JH, Lee BH et al (2005) Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 48:743–756

    Article  CAS  PubMed  Google Scholar 

  39. Willis CL (2010) Glia-induced reversible disruption of blood–brain barrier integrity and neuropathological response of the neurovascular unit. Toxicol Pathol 39:172–185

    Article  PubMed  Google Scholar 

  40. Hohlfeld R (1997) Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain 120(Pt 5):865–916

    Article  PubMed  Google Scholar 

  41. El-behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189–197

    Article  PubMed  PubMed Central  Google Scholar 

  42. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kennedy KJ, Strieter RM, Kunkel SL, Lukacs NW, Karpus WJ (1998) Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1alpha and monocyte chemotactic protein-1. J Neuroimmunol 92:98–108

    Article  CAS  PubMed  Google Scholar 

  44. Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, Hyun JW, Kang JL et al (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 209:40–49

    Article  CAS  PubMed  Google Scholar 

  45. Shin T, Ahn M, Matsumoto Y (2012) Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anatomy Cell Biol 45:141–148

    Article  Google Scholar 

  46. Bowie LE, Roscoe WA, Lui EM, Smith R, Karlik SJ (2012) Effects of an aqueous extract of North American ginseng on MOG(35–55)-induced EAE in mice. Can J Physiol Pharmacol 90:933–939

    Article  CAS  PubMed  Google Scholar 

  47. Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  48. Yuan CS, Wang CZ, Wicks SM, Qi LW (2010) Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 34:160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim DH (2012) Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 36:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kemper KJ (2007) The yin and yang of integrative clinical care, education, and research. Explore (New York, NY) 3:37–41

    Article  Google Scholar 

  51. Dan B, Steven C, Erich S, Andrew G (2004) Chinese herbal medicine. Mater Med

  52. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L (2011) The prospects of minocycline in multiple sclerosis. J Neuroimmunol 235:1–8

    Article  CAS  PubMed  Google Scholar 

  53. Guo X, Nakamura K, Kohyama K, Harada C, Behanna HA, Watterson DM, Matsumoto Y, Harada T (2007) Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res 59:457–466

    Article  CAS  PubMed  Google Scholar 

  54. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO et al (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC (2007) Loss of blood–brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc Natl Acad Sci U S A 104:5656–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng Y, Gu B, Ji X, Ding X, Song C, Wu F (2007) Sinomenine, an antirheumatic alkaloid, ameliorates clinical signs of disease in the Lewis rat model of acute experimental autoimmune encephalomyelitis. Biol Pharm Bull 30:1438–1444

    Article  CAS  PubMed  Google Scholar 

  57. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17:64–70

    Article  CAS  PubMed  Google Scholar 

  58. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  CAS  PubMed  Google Scholar 

  59. Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R (2010) Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood–brain barrier endothelium. J Immunol 185:4846–4855

    Article  CAS  PubMed  Google Scholar 

  60. Chaudhary P, Marracci GH, Bourdette DN (2006) Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J Neuroimmunol 175:87–96

    Article  CAS  PubMed  Google Scholar 

  61. Kan QC, Zhu L, Liu N, Zhang GX (2013) Matrine suppresses expression of adhesion molecules and chemokines as a mechanism underlying its therapeutic effect in CNS autoimmunity. Immunol Res 56:189–196

    Article  CAS  PubMed  Google Scholar 

  62. Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED, Hernandez-Navarro VE, Sanchez-Lopez AL et al (2014) Role of the blood–brain barrier in multiple sclerosis. Arch Med Res 45:687–697

    Article  CAS  PubMed  Google Scholar 

  63. Flynn KM, Michaud M, Madri JA (2013) CD44 deficiency contributes to enhanced experimental autoimmune encephalomyelitis: a role in immune cells and vascular cells of the blood–brain barrier. Am J Pathol 182:1322–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim H, Ahn M, Choi S, Kim M, Sim KB, Kim J, Moon C, Shin T (2013) Potential role of fibronectin in microglia/macrophage activation following cryoinjury in the rat brain: an immunohistochemical study. Brain Res 1502:11–19

    Article  CAS  PubMed  Google Scholar 

  65. Muzio L, Cavasinni F, Marinaro C, Bergamaschi A, Bergami A, Porcheri C, Cerri F, Dina G et al (2010) Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis. Mol Cell Neurosci 43:268–280

    Article  CAS  PubMed  Google Scholar 

  66. Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood–brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 118:219–233

    Article  CAS  PubMed  Google Scholar 

  67. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  68. Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L, Sobel RA, Wucherpfennig KW et al (2004) Myelin proteolipid protein-specific CD4 + CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 101:15434–15439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  70. Chen X, Oppenheim JJ, Winkler-Pickett RT, Ortaldo JR, Howard OM (2006) Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3(+)CD4(+)CD25(+) T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur J Immunol 36:2139–2149

    Article  CAS  PubMed  Google Scholar 

  71. Liu YM, Liu XJ, Bai SS, Mu LL, Kong QF, Sun B, Wang DD, Wang JH et al (2010) The effect of electroacupuncture on T cell responses in rats with experimental autoimmune encephalitis. J Neuroimmunol 220:25–33

    Article  CAS  PubMed  Google Scholar 

  72. Le Y, Zhou Y, Iribarren P, Wang J (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1:95–104

    CAS  PubMed  Google Scholar 

  73. Szczucinski A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115:137–146

    Article  CAS  PubMed  Google Scholar 

  74. Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB (2010) Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A 107:8416–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh NP, Hegde VL, Hofseth LJ, Nagarkatti M, Nagarkatti P (2007) Resveratrol (trans-3,5,4′-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol 72:1508–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang F, Wei W, Chai H, Xie X (2013) Aurintricarboxylic acid ameliorates experimental autoimmune encephalomyelitis by blocking chemokine-mediated pathogenic cell migration and infiltration. J Immunol 190:1017–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Korean Society of Ginseng and the Korea Ginseng Cooperation (2012–2013) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2007–0054931 and 2014R1A2A1A11051240). This research was also supported by the Traditional Korean Medicine R&D program founded by the Ministry of Health & Welfare through the Korea Health Industry Development Institute (KHIDI) (HI13C0263).

Conflict of Interest

All the authors of this manuscript have no conflict of interest in this subject.

Authors’ Contributions

MJL performed the behavioral experiment, immunohistochemistry, PCR analysis, flow cytometry, and Western blots and prepared the figures. MJ and JHC assisted with behavioral and histological experiments and prepared the figures. BSC performed the histological experiment associated with semithin section. DYK, SKO, SHK, YSK, SO, JHL, BJC, and SYN commented about the treatment with KRGE, contributed to the interpretation of data, and supervised the project. IHC conceived all experiments, analyzed the results, and wrote the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Hyun Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.J., Jang, M., Choi, J. et al. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells. Mol Neurobiol 53, 1977–2002 (2016). https://doi.org/10.1007/s12035-015-9131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9131-4

Keywords

Navigation