Skip to main content
Log in

FBXW7-Induced MTOR Degradation Forces Autophagy to Counteract Persistent Prion Infection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autophagy is an important protein degradation pathway and a part of the innate immune system that is activated in the brain tissue during animal and human prion diseases. However, the possible mechanism by which prion infection triggers autophagy and the significance of activated autophagy on prion accumulation remain unknown. Here, we demonstrated that autophagic flux was enhanced in the persistent prion-infected cell line, SMB-S15. Knockdown of ATG5 and the presence of three autophagic inhibitors resulted in a significant increase of PrPSc. The mammalian target of rapamycin (MTOR) levels in SMB-S15 cells were also markedly decreased, in direct relation to PrPSc accumulation. F-box and WD repeat domain containing 7 (FBXW7) levels in SMB-S15 cells and in the brains of scrapie-agent 263K-infected hamsters were upregulated at the early stage of infection, leading to active ubiquitination and degradation of MTOR. Knockdown of FBXW7 in SMB-S15 cells remarkably inhibited autophagic flux and increased PrPSc accumulation. Thus, we conclude that prion infection induced the expression of FBXW7, which mediated MTOR ubiquitination and degradation, further altering phosphorylation status through cross talk between MTORC1 and AMPK and increasing autophagic flux. Autophagy may serve as innate immunity to degrade PrPSc and maintain prion homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135. doi:10.1126/science.1183748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nunziante M, Ackermann K, Dietrich K, Wolf H, Gadtke L, Gilch S, Vorberg I, Groschup M, Schatzl HM (2011) Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein. J Biol Chem 286(39):33942–33953. doi:10.1074/jbc.M111.272617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu Y, Tian C, Wang SB, Xie WL, Guo Y, Zhang J, Shi Q, Chen C, Dong XP (2012) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8(11):1604–1620. doi:10.4161/auto.21482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786. doi:10.1038/nature05291

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, Fu W, Wei FZ, Wang L, Xie D, Zhu WG (2013) XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res 23(4):491–507. doi:10.1038/cr.2013.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, Miao L, Zhang H (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136(2):308–321. doi:10.1016/j.cell.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  8. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  9. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi:10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  10. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  11. Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol 82(3):225–228

    Article  CAS  PubMed  Google Scholar 

  12. Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573. doi:10.1016/j.biocel.2004.04.014

    Article  CAS  PubMed  Google Scholar 

  13. Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM, Ertmer A (2009) Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5(3):361–369

    Article  CAS  PubMed  Google Scholar 

  14. Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109(1):25–34. doi:10.1111/j.1471-4159.2009.05906.x

    Article  CAS  PubMed  Google Scholar 

  15. Doh-Ura K, Iwaki T, Caughey B (2000) Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74(10):4894–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, Bostock CJ (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J 20(13):3351–3358. doi:10.1093/emboj/20.13.3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    Article  CAS  PubMed  Google Scholar 

  18. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

  19. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi:10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  21. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713. doi:10.1016/j.cub.2005.02.053

    Article  CAS  PubMed  Google Scholar 

  22. Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R, Balmain A (2008) FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 321(5895):1499–1502. doi:10.1126/science.1162981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sir D, Ou JH (2010) Autophagy in viral replication and pathogenesis. Mol Cells 29(1):1–7. doi:10.1007/s10059-010-0014-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. doi:10.1038/nrc2290

    Article  CAS  PubMed  Google Scholar 

  25. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272(16):4211–4220. doi:10.1111/j.1742-4658.2005.04833.x

    Article  CAS  PubMed  Google Scholar 

  27. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavare S, Inoki K, Shimizu S (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970. doi:10.1126/science.1205407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456. doi:10.1074/jbc.M001394200

    CAS  PubMed  Google Scholar 

  29. Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443(7113):803–810. doi:10.1038/nature05294

    Article  CAS  PubMed  Google Scholar 

  30. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470(7335):540–542. doi:10.1038/nature09768

    Article  CAS  PubMed  Google Scholar 

  31. Bueler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C (1994) High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1(1):19–30

    CAS  PubMed  Google Scholar 

  32. Hill AF, Collinge J (2003) Subclinical prion infection. Trends Microbiol 11(12):578–584

    Article  CAS  PubMed  Google Scholar 

  33. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR (2012) Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 485(7399):507–511. doi:10.1038/nature11058

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation Grant (81100980, 81101302 and 31100117), China Mega-Project for Infectious Disease (2011ZX10004-101, 2012ZX10004215), and SKLID Development Grant (2012SKLID102, 2011SKLID302, 2011SKLID204, 2011SKLID211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Dong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Tian, C., Sun, J. et al. FBXW7-Induced MTOR Degradation Forces Autophagy to Counteract Persistent Prion Infection. Mol Neurobiol 53, 706–719 (2016). https://doi.org/10.1007/s12035-014-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9028-7

Keywords

Navigation