Skip to main content
Log in

Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The outcome of spinal cord injury (SCI) is determined by both neural cell-intrinsic survival pathways and tissue microenvironment-derived signals. Macrophages dominating the inflammatory responses in SCI possess both destructive and reparative potentials, according to their activation status. Notch signaling is involved in both cell survival and macrophage-mediated inflammation, but a comprehensive role of Notch signaling in SCI has been elusive. In this study, we compared the effects of general Notch blockade by a pharmaceutical γ-secretase inhibitor (GSI) and myeloid-specific Notch signal disruption by recombination signal binding protein Jκ (RBP-J) knockout on SCI. The administration of Notch signal inhibitor GSI resulted in worsened hind limb locomotion and exacerbated inflammation. However, mice lacking RBP-J, the critical transcription factor mediating signals from all four mammalian Notch receptors, in myeloid lineage displayed promoted functional recovery, attenuated glial scar formation, improved neuronal survival and axon regrowth, and mitigated inflammatory response after SCI. These benefits were accompanied by enhanced AKT activation in the lesion area after SCI. These findings demonstrate that abrogating Notch signal in myeloid cells ameliorates inflammation response post-SCI and promotes functional recovery, but general pharmaceutical Notch interception has opposite effects. Therefore, clinical intervention of Notch signaling in SCI needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388

    Article  CAS  PubMed  Google Scholar 

  2. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  3. Kigerl KA, McGaughy VM, Popovich PG (2006) Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 94(4):578–594

    Article  Google Scholar 

  4. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399

    Article  CAS  PubMed  Google Scholar 

  5. Gensel JC, Donnelly DJ, Popovich PG (2011) Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Targets 15(4):505–518

    Article  PubMed  Google Scholar 

  6. Ren Y, Young W (2013) Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013:945034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smith PD, Bell MT, Puskas F, Meng X, Cleveland JC Jr, Weyant MJ, Fullerton DA, Reece TB (2013) Preservation of motor function after spinal cord ischemia and reperfusion injury through microglial inhibition. Ann Thorac Surg 95(5):1647–1653

    Article  PubMed  Google Scholar 

  8. Guilian D, Robertson C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 7(1):33–42

    Article  Google Scholar 

  9. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158(2):351–365

    Article  CAS  PubMed  Google Scholar 

  10. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24(16):4043–4051

    Article  CAS  PubMed  Google Scholar 

  11. Barrette B, Hébert MA, Filali M, Lafortune K, Vallières N, Gowing G, Julien JP, Lacroix S (2008) Requirement of myeloid cells for axon regeneration. J Neurosci 28(38):9363–9376

    Article  CAS  PubMed  Google Scholar 

  12. Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29(12):3956–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5(8):e171

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dougherty KD, Dreyfus CF, Black IB (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 7(6 Pt B):574–585

    Article  CAS  PubMed  Google Scholar 

  15. Shechter R, Raposo C, London A, Sagi I, Schwartz M (2011) The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair. PLoS ONE 6(12):e27969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Article  CAS  PubMed  Google Scholar 

  17. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9(6):481–493

    Article  CAS  PubMed  Google Scholar 

  20. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monsalve E, Pérez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J, Díaz-Guerra MJ (2006) Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J Immunol 176(9):5362–5373

    Article  CAS  PubMed  Google Scholar 

  22. Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E, Heuschling P (2007) Notch signaling modulates the activation of microglial cells. Glia 55(15):1519–1530

    Article  PubMed  Google Scholar 

  23. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, Osborne BA (2008) Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol 38(1):174–183

    Article  CAS  PubMed  Google Scholar 

  24. Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J, Díaz-Guerra MJ (2009) Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappa B activity. Eur J Immunol 39(9):2556–2570

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X (2012) Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13(7):642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foldi J, Chung AY, Xu H, Zhu J, Outtz HH, Kitajewski J, Li Y, Hu X, Ivashkiv LB (2010) Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J Immunol 185(9):5023–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Xu W, Xiong S (2010) Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol 184(15):6465–6478

    Article  CAS  PubMed  Google Scholar 

  29. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70(12):4840–4849

    Article  CAS  PubMed  Google Scholar 

  30. Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T, Poosala S, Granger DN, Mattson MP (2006) Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12(6):621–623

    Article  CAS  PubMed  Google Scholar 

  31. El Bejjani R, Hammarlund M (2012) Notch signaling inhibits axon regeneration. Neuron 73(2):268–278

    Article  PubMed  PubMed Central  Google Scholar 

  32. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14(6):637–645

    Article  CAS  PubMed  Google Scholar 

  33. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    Article  CAS  PubMed  Google Scholar 

  34. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659

    Article  PubMed  Google Scholar 

  35. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26(2):192–197

    Article  CAS  PubMed  Google Scholar 

  36. Cui Q (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33(2):155–179

    Article  PubMed  Google Scholar 

  37. Dias TB, Yang YJ, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245–3252

    Article  CAS  PubMed  Google Scholar 

  38. Oishi K, Kamakura S, Isazawa Y, Yoshimatsu T, Kuida K, Nakafuku M, Masuyama N, Gotoh Y (2004) Notch signaling promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Dev Biol 276(1):172–184

    Article  CAS  PubMed  Google Scholar 

  39. Yu HC, Qin HY, He F, Wang L, Fu W, Liu D, Guo FC, Liang L, Dou KF, Han H (2011) Canonical Notch pathway protects hepatocytes from ischemia reperfusion injury by repressing ROS production through JAK2/STAT3 signaling. Hepatology 54(3):979–988

    Article  CAS  PubMed  Google Scholar 

  40. Kamei N, Kwon SM, Ishikawa M, Ii M, Nakanishi K, Yamada K, Hozumi K, Kawamoto A, Ochi M, Asahara T (2012) Endothelial progenitor cells promote astrogliosis following spinal cord injury through Jagged1-dependent Notch signaling. J Neurotrauma 29(9):1758–1769

    Article  PubMed  Google Scholar 

  41. Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727

    Article  PubMed  Google Scholar 

  42. Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST, Ling EA (2008) Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia 56(11):1224–1237

    Article  PubMed  Google Scholar 

  43. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to change in microenvironmental influences. J Immunol 175(1):342–349

    Article  CAS  PubMed  Google Scholar 

  44. Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF, Han H (2012) N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol 278(1–2):84–90

    Article  CAS  PubMed  Google Scholar 

  45. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 29(2):332–346

    Article  Google Scholar 

  46. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  CAS  PubMed  Google Scholar 

  47. Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16(2):245–255

    Article  CAS  PubMed  Google Scholar 

  48. Zheng MH, Shi M, Pei Z, Gao F, Han H, Ding YQ (2009) The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2(12):38

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neurosci Bull 29(4):421–435

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (2012AA022402, 2011CB964700, 2011CB504103) and the National Natural Science Foundation of China (31130019, 31371374, 31371474, 91029731). The study was performed in the Graduates Innovation Center of Fourth Military Medical University.

Conflict of Interest

The authors declare that they have no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Hua Zheng, Zhuo-Jing Luo or Hua Han.

Additional information

Bei-Yu Chen, Min-Hua Zheng, and Yan Chen contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 18 kb)

Supplementary Fig. S1

(DOCX 815 kb)

Supplementary Fig. S2

(DOCX 1164 kb)

Supplementary Fig. S3

(DOCX 645 kb)

Supplementary Fig. S4

(DOCX 2303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BY., Zheng, MH., Chen, Y. et al. Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice. Mol Neurobiol 52, 1378–1390 (2015). https://doi.org/10.1007/s12035-014-8934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8934-z

Keywords

Navigation