Skip to main content

Advertisement

Log in

The Role of Atonal Factors in Mechanosensory Cell Specification and Function

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jan YN, Jan LY (1990) Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosci 13(12):493–498

    Article  CAS  PubMed  Google Scholar 

  2. Skeath JB, Carroll SB (1991) Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev 5(6):984–995

    Article  CAS  PubMed  Google Scholar 

  3. Romani S, Campuzano S, Macagno ER, Modolell J (1989) Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev 3(7):997–1007

    Article  CAS  PubMed  Google Scholar 

  4. Cubas P, de Celis JF, Campuzano S, Modolell J (1991) Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 5(6):996–1008

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Bermudo MD, Martinez C, Rodriguez A, Jimenez F (1991) Distribution and function of the lethal of scute gene product during early neurogenesis in Drosophila. Development 113(2):445–454

    CAS  PubMed  Google Scholar 

  6. Dambly-Chaudière C, Ghysen A (1987) Independent subpatterns of sense organs require independent genes of the achaete-scute complex in Drosophila larvae. Genes Dev 1(3):297–306

    Article  Google Scholar 

  7. Jarman AP, Grau Y, Jan LY, Jan YN (1993) Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73(7):1307–1321

    Article  CAS  PubMed  Google Scholar 

  8. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boekhoff-Falk G, Eberl DF (2014) The Drosophila auditory system. Wiley Interdiscip Rev Dev Biol 3(2):179–191

    Article  CAS  PubMed  Google Scholar 

  10. Hassan BA, Bellen HJ (2000) Doing the MATH: is the mouse a good model for fly development? Genes Dev 14(15):1852–1865

    CAS  PubMed  Google Scholar 

  11. Jarman AP, Grell EH, Ackerman L, Jan LY, Jan YN (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369(6479):398–400

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee U, Zipursky SL (1990) The role of cell-cell interaction in the development of the Drosophila visual system. Neuron 4(2):177–187

    Article  CAS  PubMed  Google Scholar 

  13. Grillenzoni N, de Vaux V, Meuwly J, Vuichard S, Jarman A, Holohan E, Gendre N, Stocker RF (2007) Role of proneural genes in the formation of the larval olfactory organ of Drosophila. Dev Genes Evol 217(3):209–219

    Article  PubMed  Google Scholar 

  14. Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67(18):3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goulding SE, zur Lage P, Jarman AP (2000) Amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25(1):69–78

    Article  CAS  PubMed  Google Scholar 

  16. Goulding SE, White NM, Jarman AP (2000) Cato encodes a basic helix-loop-helix transcription factor implicated in the correct differentiation of Drosophila sense organs. Dev Biol 221(1):120–131

    Article  CAS  PubMed  Google Scholar 

  17. Huang ML, Hsu CH, Chien CT (2000) The proneural gene amos promotes multiple dendritic neuron formation in the Drosophila peripheral nervous system. Neuron 25(1):57–67

    Article  PubMed  Google Scholar 

  18. zur Lage PI, Prentice DRA, Holohan EE, Jarman AP (2003) The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 130:4683–4689

    Article  CAS  PubMed  Google Scholar 

  19. zur Lage PI, Jarman AP (2010) The function and regulation of the bHLH gene, cato, in Drosophila neurogenesis. BMC Dev Biol 10:34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang WH, Tupal S, Huang TW, Ward CS, Neul JL, Klisch TJ, Gray PA, Zoghbi HY (2012) Atoh1 governs the migration of postmitotic neurons that shape respiratory effectiveness at birth and chemoresponsiveness in adulthood. Neuron 75(5):799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, Fritzsch B, Zoghbi HY (2009) Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci 29(36):11123–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rose MF, Ren J, Ahmad KA, Chao HT, Klisch TJ, Flora A, Greer JJ, Zoghbi HY (2009) Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64(3):341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48(1):31–43

    Article  CAS  PubMed  Google Scholar 

  26. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390(6656):169–172

    Article  CAS  PubMed  Google Scholar 

  27. Helms AW, Johnson JE (1998) Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 125(5):919–928

    CAS  PubMed  Google Scholar 

  28. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30(2):411–422

    Article  CAS  PubMed  Google Scholar 

  29. Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY (2007) Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132(7):2478–2488

    Article  CAS  PubMed  Google Scholar 

  30. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY (2001) Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294(5549):2155–2158

    Article  CAS  PubMed  Google Scholar 

  31. Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY (2009) Merkel cells are essential for light-touch responses. Science 324(5934):1580–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129(10):2495–2505

    CAS  PubMed  Google Scholar 

  33. Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 7(12):1310–1318

    Article  CAS  PubMed  Google Scholar 

  34. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284(5421):1837–1841

    Article  CAS  PubMed  Google Scholar 

  35. Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15(1):24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128(13):2497–2508

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Inoue C, Bae SK, Takatsuka K, Inoue T, Bessho Y, Kageyama R (2001) Math6, a bHLH gene expressed in the developing nervous system, regulates neuronal versus glial differentiation. Genes Cells 6(11):977–986

    Article  CAS  PubMed  Google Scholar 

  38. Ross MD, Martinka S, Mukherjee A, Sedor JR, Vinson C, Bruggeman LA (2006) Math6 expression during kidney development and altered expression in a mouse model of glomerulosclerosis. Dev Dyn 235(11):3102–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lynn FC, Sanchez L, Gomis R, German MS, Gasa R (2008) Identification of the bHLH factor Math6 as a novel component of the embryonic pancreas transcriptional network. PLoS One 3(6):e2430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yao J, Zhou J, Liu Q, Lu D, Wang L, Qiao X, Jia W (2010) Atoh8, a bHLH transcription factor, is required for the development of retina and skeletal muscle in zebrafish. PLoS One 5(6):e10945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Ma Q, Chen Z, del Barco BI, de la Pompa JL, Anderson DJ (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20(3):469–482

    Article  CAS  PubMed  Google Scholar 

  42. Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365–376

    Article  CAS  PubMed  Google Scholar 

  43. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31(2):219–232

    Article  CAS  PubMed  Google Scholar 

  44. Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134(24):4405–4415

    Article  CAS  PubMed  Google Scholar 

  45. Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129(8):1871–1880

    CAS  PubMed  Google Scholar 

  46. Nieto M, Schuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29(2):401–413

    Article  CAS  PubMed  Google Scholar 

  47. Henke RM, Savage TK, Meredith DM, Glasgow SM, Hori K, Dumas J, MacDonald RJ, Johnson JE (2009) Neurog2 is a direct downstream target of the Ptf1a-Rbpj transcription complex in dorsal spinal cord. Development 136(17):2945–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roybon L, Deierborg T, Brundin P, Li JY (2009) Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur J Neurosci 29(2):232–243

    Article  PubMed  Google Scholar 

  49. Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20(3):483–494

    Article  CAS  PubMed  Google Scholar 

  50. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97(4):1607–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salama-Cohen P, Arevalo MA, Grantyn R, Rodriguez-Tebar A (2006) Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J Neurochem 97(5):1269–1278

    Article  CAS  PubMed  Google Scholar 

  52. Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8(4):221–241

    Article  CAS  PubMed  Google Scholar 

  53. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 11(18):2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14(22):2839–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pennesi ME, Cho JH, Yang Z, Wu SH, Zhang J, Wu SM, Tsai MJ (2003) BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J Neurosci 23(2):453–461

    CAS  PubMed  Google Scholar 

  56. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13(13):1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boutin C, Hardt O, de Chevigny A, Core N, Goebbels S, Seidenfaden R, Bosio A, Cremer H (2010) NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci U S A 107(3):1201–1206

    Article  CAS  PubMed  Google Scholar 

  58. McCormick MB, Tamimi RM, Snider L, Asakura A, Bergstrom D, Tapscott SJ (1996) NeuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Mol Cell Biol 16(10):5792–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilke SA, Hall BJ, Antonios JK, Denardo LA, Otto S, Yuan B, Chen F, Robbins EM, Tiglio K, Williams ME, Qiu Z, Biederer T, Ghosh A (2012) NeuroD2 regulates the development of hippocampal mossy fiber synapses. Neural Dev 7:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, Kim AH, Yamada T, Wu B, Bilimoria PM, Ikeuchi Y, de la Iglesia N, Shen J, Bonni A (2009) A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science 326(5952):575–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ince-Dunn G, Hall BJ, Hu SC, Ripley B, Huganir RL, Olson JM, Tapscott SJ, Ghosh A (2006) Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49(5):683–695

    Article  CAS  PubMed  Google Scholar 

  62. Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129(4):831–842

    CAS  PubMed  Google Scholar 

  63. Ohsawa R, Ohtsuka T, Kageyama R (2005) Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors. J Neurosci 25(25):5857–5865

    Article  CAS  PubMed  Google Scholar 

  64. Mattar P, Langevin LM, Markham K, Klenin N, Shivji S, Zinyk D, Schuurmans C (2008) Basic helix-loop-helix transcription factors cooperate to specify a cortical projection neuron identity. Mol Cell Biol 28(5):1456–1469

    Article  CAS  PubMed  Google Scholar 

  65. Bormuth I, Yan K, Yonemasu T, Gummert M, Zhang M, Wichert S, Grishina O, Pieper A, Zhang W, Goebbels S, Tarabykin V, Nave KA, Schwab MH Neuronal basic helix-loop-helix proteins Neurod2/6 regulate cortical commissure formation before midline interactions. J Neurosci 33 (2):641–651

  66. Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci 31 (20):7365–7379

  67. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270(15):8730–8738

    Article  CAS  PubMed  Google Scholar 

  68. Ben-Arie N, McCall AE, Berkman S, Eichele G, Bellen HJ, Zoghbi HY (1996) Evolutionary conservation of sequence and expression of the bHLH protein atonal suggests a conserved role in neurogenesis. Hum Mol Genet 5(9):1207–1216

    Article  CAS  PubMed  Google Scholar 

  69. Mulvaney J, Dabdoub A (2012) Atoh1, an essential transcription factor in neurogenesis and intestinal and inner ear development: function, regulation, and context dependency. J Assoc Res Otolaryngol 13(3):281–293

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127(5):1039–1048

    CAS  PubMed  Google Scholar 

  71. Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12(18):1611–1616

    Article  CAS  PubMed  Google Scholar 

  72. Lumpkin EA, Collisson T, Parab P, Omer-Abdalla A, Haeberle H, Chen P, Doetzlhofer A, White P, Groves A, Segil N, Johnson JE (2003) Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns 3(4):389–395

    Article  CAS  PubMed  Google Scholar 

  73. Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE (2000) Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127(6):1185–1196

    CAS  PubMed  Google Scholar 

  74. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24

    Article  CAS  PubMed  Google Scholar 

  75. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234(3):633–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 3(6):580–586

    Article  CAS  PubMed  Google Scholar 

  77. VanDussen KL, Samuelson LC (2010) Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 346(2):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noah TK, Shroyer NF (2013) Notch in the intestine: regulation of homeostasis and pathogenesis. Annu Rev Physiol 75:263–288

    Article  CAS  PubMed  Google Scholar 

  79. Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A, Lumpkin EA (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Owens DM, Lumpkin EA (2014) Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 4(6)

  81. Wellnitz SA, Lesniak DR, Gerling GJ, Lumpkin EA (2010) The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol 103(6):3378–3388

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275(1–2):66–80

    Article  CAS  PubMed  Google Scholar 

  83. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714

    Article  CAS  PubMed  Google Scholar 

  84. Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134(2):295–305

    Article  CAS  PubMed  Google Scholar 

  85. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455(7212):537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kelly MC, Chang Q, Pan A, Lin X, Chen P (2012) Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 32(19):6699–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Z, Dearman JA, Cox BC, Walters BJ, Zhang L, Ayrault O, Zindy F, Gan L, Roussel MF, Zuo J (2012) Age-dependent in vivo conversion of mouse cochlear pillar and deiters’ cells to immature hair cells by atoh1 ectopic expression. J Neurosci 32(19):6600–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B (2012) A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 7(1):e30358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lanford PJ, Shailam R, Norton CR, Gridley T, Kelley MW (2000) Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J Assoc Res Otolaryngol 1(2):161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang H, Xie X, Deng M, Chen X, Gan L (2010) Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 48(6):407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376(1):86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK (2013) Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 33(24):10110–10122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Millimaki BB, Sweet EM, Riley BB (2010) Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. Dev Biol 338(2):262–269

    Article  CAS  PubMed  Google Scholar 

  94. Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434(7036):1031–1035

    Article  CAS  PubMed  Google Scholar 

  95. Neves J, Parada C, Chamizo M, Giraldez F (2011) Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 138(4):735–744

    Article  CAS  PubMed  Google Scholar 

  96. Neves J, Uchikawa M, Bigas A, Giraldez F (2012) The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One 7(1):e30871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Neves J, Vachkov I, Giraldez F (2013) Sox2 regulation of hair cell development: incoherence makes sense. Hear Res 297:20–29

    Article  CAS  PubMed  Google Scholar 

  98. Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci U S A 107(36):15798–15803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan W, Jin Y, Chen J, Rottier RJ, Steel KP, Kiernan AE (2013) Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33(41):16146–16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res

  101. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309

    Article  Google Scholar 

  102. Reich NC, Liu L (2006) Tracking STAT nuclear traffic. Nat Rev Immunol 6(8):602–612

    Article  CAS  PubMed  Google Scholar 

  103. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One 7(9):e46355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY (2011) In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci U S A 108(8):3288–3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cruz RM, Lambert PR, Rubel EW (1987) Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch Otolaryngol Head Neck Surg 113(10):1058–1062

    Article  CAS  PubMed  Google Scholar 

  107. Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240(4860):1772–1774

    Article  CAS  PubMed  Google Scholar 

  108. Ma EY, Raible DW (2009) Signaling pathways regulating zebrafish lateral line development. Curr Biol 19(9):R381–386

    Article  CAS  PubMed  Google Scholar 

  109. Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing production of sensory cells in the vestibular epithelium of the chick. Hear Res 57(2):166–174

    Article  CAS  PubMed  Google Scholar 

  110. Corwin JT (1981) Postembryonic production and aging in inner ear hair cells in sharks. J Comp Neurol 201(4):541–553

    Article  CAS  PubMed  Google Scholar 

  111. Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol 51(6–7):633–647

    Article  CAS  PubMed  Google Scholar 

  112. Ma EY, Rubel EW, Raible DW (2008) Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 28(9):2261–2273

    Article  CAS  PubMed  Google Scholar 

  113. Roberson DW, Alosi JA, Cotanche DA (2004) Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res 78(4):461–471

    Article  CAS  PubMed  Google Scholar 

  114. Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 236(1):156–170

    Article  CAS  PubMed  Google Scholar 

  115. Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Cheng AG, Zuo J (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141(4):816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge AS (2014) Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2(3):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kelley MW, Talreja DR, Corwin JT (1995) Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J Neurosci 15(4):3013–3026

    CAS  PubMed  Google Scholar 

  118. Roberson DW, Rubel EW (1994) Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 15(1):28–34

    CAS  PubMed  Google Scholar 

  119. Liu Z, Fang J, Dearman J, Zhang L, Zuo J (2014) In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic atoh1 expression. PLoS One 9(2):e89377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  120. Yang J, Bouvron S, Lv P, Chi F, Yamoah EN (2012) Functional features of trans-differentiated hair cells mediated by Atoh1 reveals a primordial mechanism. J Neurosci 32(11):3712–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Husseman J, Raphael Y (2009) Gene therapy in the inner ear using adenovirus vectors. Adv Otorhinolaryngol 66:37–51

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11(3):271–276

    Article  CAS  PubMed  Google Scholar 

  123. Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y (2008) Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 240(1–2):52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Smeti I, Savary E, Capelle V, Hugnot JP, Uziel A, Zine A (2011) Expression of candidate markers for stem/progenitor cells in the inner ears of developing and adult GFAP and nestin promoter-GFP transgenic mice. Gene Expr Patterns 11(1–2):22–32

    Article  CAS  PubMed  Google Scholar 

  125. Waldhaus J, Cimerman J, Gohlke H, Ehrich M, Muller M, Lowenheim H (2012) Stemness of the organ of Corti relates to the epigenetic status of Sox2 enhancers. PLoS One 7(5):e36066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Acar M, Jafar-Nejad H, Giagtzoglou N, Yallampalli S, David G, He Y, Delidakis C, Bellen HJ (2006) Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 133(10):1979–1989

    Article  CAS  PubMed  Google Scholar 

  127. Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci U S A 104(39):15382–15387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Masuda M, Pak K, Chavez E, Ryan AF (2012) TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 372(1):68–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Powell LM, Chen A, Huang YC, Wang PY, Kemp SE, Jarman AP (2012) The SUMO pathway promotes basic helix-loop-helix proneural factor activity via a direct effect on the Zn finger protein senseless. Mol Cell Biol 32(14):2849–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Powell LM, Deaton AM, Wear MA, Jarman AP (2008) The specificity of atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of Senseless. Genes to Cells 13(9):915–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kiernan AE (2013) Notch signaling during cell fate determination in the inner ear. Semin Cell Dev Biol 24(5):470–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bok J, Zenczak C, Hwang CH, Wu DK (2013) Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 110(34):13869–13874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tateya T, Imayoshi I, Tateya I, Hamaguchi K, Torii H, Ito J, Kageyama R (2013) Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 140(18):3848–3857

    Article  CAS  PubMed  Google Scholar 

  134. Shi F, Cheng YF, Wang XL, Edge AS (2010) Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3′ enhancer. J Biol Chem 285(1):392–400

    Article  CAS  PubMed  Google Scholar 

  135. Tsuchiya K, Nakamura T, Okamoto R, Kanai T, Watanabe M (2007) Reciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology 132(1):208–220

    Article  CAS  PubMed  Google Scholar 

  136. Mutoh H, Sakamoto H, Hayakawa H, Arao Y, Satoh K, Nokubi M, Sugano K (2006) The intestine-specific homeobox gene Cdx2 induces expression of the basic helix-loop-helix transcription factor Math1. Differentiation 74(6):313–321

    Article  CAS  PubMed  Google Scholar 

  137. Ebert PJ, Timmer JR, Nakada Y, Helms AW, Parab PB, Liu Y, Hunsaker TL, Johnson JE (2003) Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130(9):1949–1959

    Article  CAS  PubMed  Google Scholar 

  138. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF (2008) Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 22(6):722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kamaid A, Neves J, Giraldez F (2010) Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1. J Neurosci 30(34):11426–11434

    Article  CAS  PubMed  Google Scholar 

  140. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21(3):289–292

    Article  CAS  PubMed  Google Scholar 

  141. Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F (2001) Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 21(13):4712–4720

    CAS  PubMed  Google Scholar 

  142. Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ (2000) Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127(21):4551–4560

    CAS  PubMed  Google Scholar 

  143. Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T (2005) The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132(19):4353–4362

    Article  CAS  PubMed  Google Scholar 

  144. Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T (2006) Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med (Berl) 84(1):37–45

    Article  CAS  Google Scholar 

  145. Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R (2011) Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol 352(2):329–340

    Article  CAS  PubMed  Google Scholar 

  146. Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N (2009) Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev Cell 16(1):58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hayashi T, Kokubo H, Hartman BH, Ray CA, Reh TA, Bermingham-McDonogh O (2008) Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev Biol 316(1):87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Slowik AD, Bermingham-McDonogh O (2013) Hair cell generation by notch inhibition in the adult mammalian cristae. J Assoc Res Otolaryngol 14(6):813–828

    Article  PubMed  PubMed Central  Google Scholar 

  149. Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T (2007) Multiple roles of Notch signaling in cochlear development. Dev Biol 307(1):165–178

    Article  CAS  PubMed  Google Scholar 

  150. Liu Z, Owen T, Zhang L, Zuo J (2010) Dynamic expression pattern of Sonic hedgehog in developing cochlear spiral ganglion neurons. Dev Dyn 239(6):1674–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. D’Angelo A, Bluteau O, Garcia-Gonzalez MA, Gresh L, Doyen A, Garbay S, Robine S, Pontoglio M (2010) Hepatocyte nuclear factor 1alpha and beta control terminal differentiation and cell fate commitment in the gut epithelium. Development 137(9):1573–1582

    Article  PubMed  CAS  Google Scholar 

  152. Briggs KJ, Eberhart CG, Watkins DN (2008) Just say no to ATOH: how HIC1 methylation might predispose medulloblastoma to lineage addiction. Cancer Res 68(21):8654–8656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS One 5(7):e11661

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  154. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49–59

    Article  CAS  PubMed  Google Scholar 

  155. Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26(2):550–558

    Article  CAS  PubMed  Google Scholar 

  156. Ahmed M, Wong EY, Sun J, Xu J, Wang F, Xu PX (2012) Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 22(2):377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jeon SJ, Fujioka M, Kim SC, Edge AS (2011) Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells. J Neurosci 31(23):8351–8358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105(47):18396–18401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bardot ES, Valdes VJ, Zhang J, Perdigoto CN, Nicolis S, Hearn SA, Silva JM, Ezhkova E (2013) Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. Embo J 32(14):1990–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chellappa R, Li S, Pauley S, Jahan I, Jin K, Xiang M (2008) Barhl1 regulatory sequences required for cell-specific gene expression and autoregulation in the inner ear and central nervous system. Mol Cell Biol 28(6):1905–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hu X, Huang J, Feng L, Fukudome S, Hamajima Y, Lin J (2010) Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via the Math1-Brn3.1 signaling pathway in vitro. J Neurosci Res 88(5):927–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Scheffer D, Sage C, Corey DP, Pingault V (2007) Gene expression profiling identifies Hes6 as a transcriptional target of ATOH1 in cochlear hair cells. FEBS Lett 581(24):4651–4656

    Article  CAS  PubMed  Google Scholar 

  163. Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V (2007) The alpha1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the gamma subunit in hair cells. J Neurochem 103(6):2651–2664

    CAS  PubMed  Google Scholar 

  164. Krizhanovsky V, Soreq L, Kliminski V, Ben-Arie N (2006) Math1 target genes are enriched with evolutionarily conserved clustered E-box binding sites. J Mol Neurosci 28(2):211–229

    Article  CAS  PubMed  Google Scholar 

  165. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7):517–530

    Article  CAS  PubMed  Google Scholar 

  166. Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B (2012) Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One 7(1):e30853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lai HC, Klisch TJ, Roberts R, Zoghbi HY, Johnson JE (2011) In vivo neuronal subtype-specific targets of Atoh1 (Math1) in dorsal spinal cord. J Neurosci 31(30):10859–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Groves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Groves, A.K. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 52, 1315–1329 (2015). https://doi.org/10.1007/s12035-014-8925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8925-0

Keywords

Navigation