Skip to main content

Advertisement

Log in

Is There a Molecular Logic That Sustains Neuronal Functional Integrity and Survival? Lipid Signaling Is Necessary for Neuroprotective Neuronal Transcriptional Programs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A challenge to civilization is the growing incidence in the loss of sight and cognition due to increased life expectancy. Therefore, we are confronted with a rise in the occurrence of photoreceptor- and neuronal-survival failure, as reflected mainly by age-related macular degeneration (AMD) and Alzheimer’s disease (AD). Nervous system development is driven by neuronal apoptotic cell death, and thereafter, for the entire lifespan of an organism, neurons are postmitotic cells. In neurodegenerative diseases, apoptosis and other forms of cells death lead to selective neuronal loss. Although age is the main risk factor, not everyone develops these diseases during aging. Despite decades of important findings about neuronal cell death, the specific mechanisms that regulate neuronal survival remain incompletely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Aveldaño MI (1988) Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 27:1229–1239

    Article  PubMed  Google Scholar 

  3. Logan S, Agbaga MP, Chan MD, Kabir N, Mandal NA, Brush RS, Anderson RE (2013) Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy. Proc Natl Acad Sci U S A 110:5446–5451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    Article  PubMed  CAS  Google Scholar 

  5. Mukherjee PK, Marcheselli VL, Barreiro S, Hu J, Bok D, Bazan NG (2007) Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci U S A 104:13152–13157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bazan NG, Calandria JM, Serhan CN (2010) Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 51:2018–2031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Sepulveda-Falla D, Glatzel M, Lopera F (2012) Phenotypic profile of early-onset familial Alzheimer’s disease caused by presenilin-1 E280A mutation. J Alzheimers Dis 32:1–12

    PubMed  CAS  Google Scholar 

  9. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  PubMed  CAS  Google Scholar 

  10. Palop JJ, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bradshaw J, Saling M, Hopwood M, Anderson V, Brodtmann A (2004) Fluctuating cognition in dementia with Lewy bodies and Alzheimer’s disease is qualitatively distinct. J Neurol Neurosurg Psychiatry 75:382–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Mishra A, Goel RK (2012) Age dependent learning and memory deficit in Pentylenetetrazol kindled mice. Eur J Pharmacol 674:315–320

    Article  PubMed  CAS  Google Scholar 

  13. Sarlus H, Höglund CO, Karshikoff B, Wang X, Lekander M, Schultzberg M, Oprica M (2012) Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation. J Cell Mol Med 16:2401–2412

    Article  PubMed  CAS  Google Scholar 

  14. Sarlus H, Wang X, Cedazo-Minguez A, Schultzberg M, Oprica M (2013) Chronic airway-induced allergy in mice modifies gene expression in the brain toward insulin resistance and inflammatory responses. J Neuroinflammation 10:99

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. McManus RM, Higgins SC, Mills KH, Lynch MA (2014) Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol Aging 35:109–121

    Article  PubMed  CAS  Google Scholar 

  16. Cheng XS, Zhao KP, Jiang X, Du LL, Li XH, Ma ZW, Yao J, Luo Y, Duan DX, Wang JZ, Zhou XW (2013) Nmnat2 attenuates Tau phosphorylation through activation of PP2A. J Alzheimers Dis 36:185–195

    PubMed  CAS  Google Scholar 

  17. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FMJ (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. Neuroscience 25:8843–8853

    Article  PubMed  CAS  Google Scholar 

  18. Qiao X, Cummins DJ, Paul SM (2001) Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci 14:474–482

    Article  PubMed  CAS  Google Scholar 

  19. Reale M, Iarlori C, Feliciani C, Gambi D (2008) Peripheral chemokine receptors, their ligands, cytokines and Alzheimer’s disease. J Alzheimers Dis 14:147–159

    PubMed  CAS  Google Scholar 

  20. Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4:103–112

    Article  PubMed  CAS  Google Scholar 

  21. Leung R, Proitsi P, Simmons A, Lunnon K, Güntert A, Kronenberg D, Pritchard M, Tsolaki M, Mecocci P, Kloszewska I, Vellas B, Soininen H, Wahlund LO, Lovestone S (2013) Inflammatory proteins in plasma are associated with severity of Alzheimer’s disease. PLoS One 8:e64971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  23. Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A 86:2903–2907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 6:e15816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10:561–574

    Article  PubMed  CAS  Google Scholar 

  26. Mace PD, Smits C, Vaux DL, Silke J, Day CL (2010) Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 400:8–15

    Article  PubMed  CAS  Google Scholar 

  27. Stark DT, Bazan NG (2011) Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 31:13710–13721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, Freund-Levi Y, Faxen-Irving G, Wahlund LO, Basun H, Eriksdotter M, Schultzberg M (2013) Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis 35:697–713

    PubMed  Google Scholar 

  29. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This works was supported by National Institutes of Health grants GM103340, NS046741, and EY005121 (NGB).

Conflict of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas G. Bazan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazan, N.G. Is There a Molecular Logic That Sustains Neuronal Functional Integrity and Survival? Lipid Signaling Is Necessary for Neuroprotective Neuronal Transcriptional Programs. Mol Neurobiol 50, 1–5 (2014). https://doi.org/10.1007/s12035-014-8897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8897-0

Keywords

Navigation