Skip to main content
Log in

The Role of Collagens in Peripheral Nerve Myelination and Function

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the peripheral nervous system, myelin is formed by Schwann cells, which are surrounded by a basal lamina. Extracellular matrix (ECM) molecules in the basal lamina play an important role in regulating Schwann cell functions, including adhesion, survival, spreading, and myelination, as well as in supporting neurite outgrowth. Collagens are a major component of ECM molecules, which include 28 types that differ in structure and function. A growing body of evidence suggests that collagens are key components of peripheral nerves, where they not only provide a structural support but also affect cell behavior by triggering intracellular signals. In this review, we will summarize the main properties of collagen family, discuss the role of extensively studied collagen types (collagens IV, V, VI, and XV) in Schwann cell function and myelination, and provide a detailed overview of the recent advances with respect to these collagens in peripheral nerve function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Verheijen MH, Chrast R, Burrola P, Lemke G (2003) Local regulation of fat metabolism in peripheral nerves. Genes Dev 17:2450–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gonzalez-Perez F, Udina E, Navarro X (2013) Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 108:257–275

    Article  CAS  PubMed  Google Scholar 

  3. Chernousov MA, Yu WM, Chen ZL, Carey DJ, Strickland S (2008) Regulation of Schwann cell function by the extracellular matrix. Glia 56:1498–1507

    Article  PubMed  Google Scholar 

  4. Koopmans G, Hasse B, Sinis N (2009) The role of collagen in peripheral nerve repair. Int Rev Neurobiol 87:363–379

    Article  CAS  PubMed  Google Scholar 

  5. Hubert T, Grimal S, Carroll P, Fichard-Carroll A (2009) Collagens in the developing and diseased nervous system. Cell Mol Life Sci 66:1223–1238

    Article  CAS  PubMed  Google Scholar 

  6. Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11:407–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Article  CAS  PubMed  Google Scholar 

  8. Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53:430–442

    Article  CAS  Google Scholar 

  9. Franzke CW, Bruckner P, Bruckner-Tuderman L (2005) Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 280:4005–4008

    Article  CAS  PubMed  Google Scholar 

  10. Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268:26033–26036

    CAS  PubMed  Google Scholar 

  11. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955–1958

    Article  CAS  PubMed  Google Scholar 

  12. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  13. Kidd GJ, Ohno N, Trapp BD (2013) Biology of Schwann cells. Handb Clin Neurol 115:55–79

    Article  PubMed  Google Scholar 

  14. Chen P, Cescon M, Megighian A, Bonaldo P (2014) Collagen VI regulates peripheral nerve myelination and function. FASEB J 28:1145–1156

    Article  CAS  PubMed  Google Scholar 

  15. Murinson BB, Archer DR, Li Y, Griffin JW (2005) Degeneration of myelinated efferent fibers prompts mitosis in Remak Schwann cells of uninjured C-fiber afferents. J Neurosci 25:1179–1187

    Article  CAS  PubMed  Google Scholar 

  16. Faroni A, Castelnovo LF, Procacci P, Caffino L, Fumagalli F, Melfi S, Gambarotta G, Bettler B, Wrabetz L, Magnaghi V (2014) Deletion of GABA-B receptor in Schwann cells regulates remak bundles and small nociceptive C-fibers. Glia 62:548–565

    Article  PubMed  Google Scholar 

  17. Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11:499–505

    Article  CAS  PubMed  Google Scholar 

  18. Chance PF (1999) Overview of hereditary neuropathy with liability to pressure palsies. Ann N Y Acad Sci 883:14–21

    Article  CAS  PubMed  Google Scholar 

  19. Sander S, Nicholson GA, Ouvrier RA, McLeod JG, Pollard JD (1998) Charcot-Marie-Tooth disease: histopathological features of the peripheral myelin protein (PMP22) duplication (CMT1A) and connexin32 mutations (CMTX1). Muscle Nerve 21:217–225

    Article  CAS  PubMed  Google Scholar 

  20. Warner LE, Hilz MJ, Appel SH, Killian JM, Kolodry EH, Karpati G, Carpenter S, Watters GV, Wheeler C, Witt D, Bodell A, Nelis E, Van BC, Lupski JR (1996) Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 17:451–460

    Article  CAS  PubMed  Google Scholar 

  21. Timmerman V, Strickland AV, Zuchner S (2014) Genetics of Charcot-Marie-Tooth (CMT) disease within the frame of the human genome project success. Genes (Basel) 5:13–32

    Article  CAS  Google Scholar 

  22. Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 35:123–134

    Article  CAS  PubMed  Google Scholar 

  23. Gao X, Wang Y, Chen J, Peng J (2013) The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 24:443–453

    CAS  PubMed  Google Scholar 

  24. Cerri F, Salvatore L, Memon D, Martinelli BF, Madaghiele M, Brambilla P, Del CU, Taveggia C, Riva N, Trimarco A, Lopez ID, Comi G, Pluchino S, Martino G, Sannino A, Quattrini A (2014) Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials 35:4035–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chernousov MA, Stahl RC, Carey DJ (1998) Schwann cells use a novel collagen-dependent mechanism for fibronectin fibril assembly. J Cell Sci 111(Pt 18):2763–2777

    CAS  PubMed  Google Scholar 

  26. Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105:1023–1034

    Article  CAS  PubMed  Google Scholar 

  27. Olsen CL, Bunge RP (1986) Requisites for growth and myelination of urodele sensory neurons in tissue culture. J Exp Zool 238:373–384

    Article  CAS  PubMed  Google Scholar 

  28. Gess B, Lohmann C, Halfter H, Young P (2010) Sodium-dependent vitamin C transporter 2 (SVCT2) is necessary for the uptake of L-ascorbic acid into Schwann cells. Glia 58:287–299

    PubMed  Google Scholar 

  29. Angelow S, Haselbach M, Galla HJ (2003) Functional characterisation of the active ascorbic acid transport into cerebrospinal fluid using primary cultured choroid plexus cells. Brain Res 988:105–113

    Article  CAS  PubMed  Google Scholar 

  30. Gess B, Rohr D, Fledrich R, Sereda MW, Kleffner I, Humberg A, Nowitzki J, Strecker JK, Halfter H, Young P (2011) Sodium-dependent vitamin C transporter 2 deficiency causes hypomyelination and extracellular matrix defects in the peripheral nervous system. J Neurosci 31:17180–17192

    Article  CAS  PubMed  Google Scholar 

  31. Chernousov MA, Scherer SS, Stahl RC, Carey DJ (1999) p200, a collagen secreted by Schwann cells, is expressed in developing nerves and in adult nerves following axotomy. J Neurosci Res 56:284–294

    Article  CAS  PubMed  Google Scholar 

  32. Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R (2006) Collagen XXVIII, a novel von Willebrand factor a domain-containing protein with many imperfections in the collagenous domain. J Biol Chem 281:3494–3504

    Article  CAS  PubMed  Google Scholar 

  33. Erdman R, Stahl RC, Rothblum K, Chernousov MA, Carey DJ (2002) Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. J Biol Chem 277:7619–7625

    Article  CAS  PubMed  Google Scholar 

  34. Rothblum K, Stahl RC, Carey DJ (2004) Constitutive release of alpha4 type V collagen N-terminal domain by Schwann cells and binding to cell surface and extracellular matrix heparan sulfate proteoglycans. J Biol Chem 279:51282–51288

    Article  CAS  PubMed  Google Scholar 

  35. Chernousov MA, Rothblum K, Stahl RC, Evans A, Prentiss L, Carey DJ (2006) Glypican-1 and alpha4(V) collagen are required for Schwann cell myelination. J Neurosci 26:508–517

    Article  CAS  PubMed  Google Scholar 

  36. Chernousov MA, Stahl RC, Carey DJ (2001) Schwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains. J Neurosci 21:6125–6135

    CAS  PubMed  Google Scholar 

  37. Milner R, Wilby M, Nishimura S, Boylen K, Edwards G, Fawcett J, Streuli C, Pytela R, ffrench-Constant C (1997) Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. Dev Biol 185:215–228

    Article  CAS  PubMed  Google Scholar 

  38. Stewart HJ, Turner D, Jessen KR, Mirsky R (1997) Expression and regulation of alpha1beta1 integrin in Schwann cells. J Neurobiol 33:914–928

    Article  CAS  PubMed  Google Scholar 

  39. Feltri ML, Graus PD, Previtali SC, Nodari A, Migliavacca B, Cassetti A, Littlewood-Evans A, Reichardt LF, Messing A, Quattrini A, Mueller U, Wrabetz L (2002) Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J Cell Biol 156:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43

    Article  CAS  PubMed  Google Scholar 

  41. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG (2000) Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem 275:30716–30724

    Article  CAS  PubMed  Google Scholar 

  43. Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348:2543–2556

    Article  CAS  PubMed  Google Scholar 

  44. Tryggvason K (1996) Mutations in type IV collagen genes and Alport phenotypes. Contrib Nephrol 117:154–171

    Article  CAS  PubMed  Google Scholar 

  45. Badenas C, Praga M, Tazon B, Heidet L, Arrondel C, Armengol A, Andres A, Morales E, Camacho JA, Lens X, Davila S, Mila M, Antignac C, Darnell A, Torra R (2002) Mutations in theCOL4A4 and COL4A3 genes cause familial benign hematuria. J Am Soc Nephrol 13:1248–1254

    CAS  PubMed  Google Scholar 

  46. Buzza M, Wang YY, Dagher H, Babon JJ, Cotton RG, Powell H, Dowling J, Savige J (2001) COL4A4 mutation in thin basement membrane disease previously described in Alport syndrome. Kidney Int 60:480–483

    Article  CAS  PubMed  Google Scholar 

  47. Adachi E, Hopkinson I, Hayashi T (1997) Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol 173:73–156

    Article  CAS  PubMed  Google Scholar 

  48. Nakazato K, Muraoka M, Adachi E, Hayashi T (1996) Gelation of the lens capsule type IV collagen solution at a neutral pH. J Biochem 120:889–894

    Article  CAS  PubMed  Google Scholar 

  49. Detrait E, Laduron S, Meremans V, Baron-Van EA, van den Bosch de Aguilar, Knoops B (1999) Expression of integrins by murine MSC80 Schwann cell line: relationship to cell adhesion and migration. Neurosci Lett 267:49–52

    Article  CAS  PubMed  Google Scholar 

  50. Dreesmann L, Mittnacht U, Lietz M, Schlosshauer B (2009) Nerve fibroblast impact on Schwann cell behavior. Eur J Cell Biol 88:285–300

    Article  CAS  PubMed  Google Scholar 

  51. Lein PJ, Higgins D, Turner DC, Flier LA, Terranova VP (1991) The NC1 domain of type IV collagen promotes axonal growth in sympathetic neurons through interaction with the alpha 1 beta 1 integrin. J Cell Biol 113:417–428

    Article  CAS  PubMed  Google Scholar 

  52. Misko A, Ferguson T, Notterpek L (2002) Matrix metalloproteinase mediated degradation of basement membrane proteins in trembler J neuropathy nerves. J Neurochem 83:885–894

    Article  CAS  PubMed  Google Scholar 

  53. Rosso G, Negreira C, Sotelo JR, Kun A (2012) Myelinating and demyelinating phenotype of Trembler-J mouse (a model of Charcot-Marie-Tooth human disease) analyzed by atomic force microscopy and confocal microscopy. J Mol Recognit 25:247–255

    Article  CAS  PubMed  Google Scholar 

  54. Panseri S, Cunha C, Lowery J, Del CU, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Politis MJ (1989) Exogenous laminin induces regenerative changes in traumatized sciatic and optic nerve. Plast Reconstr Surg 83:228–235

    Article  CAS  PubMed  Google Scholar 

  56. Acar G, Tanriover G, Demir N, Kayisli UA, Sati GL, Yaba A, Idiman E, Demir R (2004) Ultrastructural and immunohistochemical similarities of two distinct entities; multiple sclerosis and hereditary motor sensory neuropathy. Acta Histochem 106:363–371

    Article  PubMed  Google Scholar 

  57. Palumbo C, Massa R, Panico MB, Di MA, Sinibaldi P, Bernardi G, Modesti A (2002) Peripheral nerve extracellular matrix remodeling in Charcot-Marie-Tooth type I disease. Acta Neuropathol 104:287–296

    CAS  PubMed  Google Scholar 

  58. Bradley JL, King RH, Muddle JR, Thomas PK (2000) The extracellular matrix of peripheral nerve in diabetic polyneuropathy. Acta Neuropathol 99:539–546

    Article  CAS  PubMed  Google Scholar 

  59. Agaimy A. Stachel KD. Jungert J. Radkow T. Carbon R. Metzler M. Holter W (2011) Malignant epithelioid peripheral nerve sheath tumor with prominent reticular/microcystic pattern in a child: a low-grade neoplasm with 18-years follow-up. Appl Immunohistochem Mol Morphol (In press)

  60. Alves DA, Bell TM, Benton C, Rushing EJ, Stevens EL (2010) Giant thoracic schwannoma in a rhesus macaque (Macaca mulatta). J Am Assoc Lab Anim Sci 49:868–872

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ziadi A, Saliba I (2010) Malignant peripheral nerve sheath tumor of intracranial nerve: a case series review. Auris Nasus Larynx 37:539–545

    Article  PubMed  Google Scholar 

  62. Scheithauer BW, Erdogan S, Rodriguez FJ, Burger PC, Woodruff JM, Kros JM, Gokden M, Spinner RJ (2009) Malignant peripheral nerve sheath tumors of cranial nerves and intracranial contents: a clinicopathologic study of 17 cases. Am J Surg Pathol 33:325–338

    Article  PubMed  Google Scholar 

  63. Gaitero L, Anor S, Fondevila D, Pumarola M (2008) Canine cutaneous spindle cell tumours with features of peripheral nerve sheath tumours a histopathological and immunohistochemical study. J Comp Pathol 139:16–23

    Article  CAS  PubMed  Google Scholar 

  64. Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL (1997) Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn 208:291–298

    Article  CAS  PubMed  Google Scholar 

  65. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(Pt 1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95(Pt 4):649–657

    CAS  PubMed  Google Scholar 

  67. Yamaguchi K, Matsuo N, Sumiyoshi H, Fujimoto N, Iyama KI, Yanagisawa S, Yoshioka H (2005) Pro-alpha3(V) collagen chain is expressed in bone and its basic N-terminal peptide adheres to osteosarcoma cells. Matrix Biol 24:283–294

    Article  CAS  PubMed  Google Scholar 

  68. Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950

    Article  CAS  PubMed  Google Scholar 

  69. Mizuno K, Hayashi T (1996) Separation of the subtypes of type V collagen molecules, [alpha 1(V)]2 alpha 2(V) and alpha 1(V) alpha 2(V) alpha 3(V), by chain composition-dependent affinity for heparin: single alpha 1(V) chain shows intermediate heparin affinity between those of the type V collagen subtypes composed of [alpha 1(V)]2 alpha 2(V) and of alpha 1(V) alpha 2(V) alpha 3(V). J Biochem 120:934–939

    Article  CAS  PubMed  Google Scholar 

  70. Fichard A, Kleman JP, Ruggiero F (1995) Another look at collagen V and XI molecules. Matrix Biol 14:515–531

    Article  CAS  PubMed  Google Scholar 

  71. Chernousov MA, Stahl RC, Carey DJ (1996) Schwann cells secrete a novel collagen-like adhesive protein that binds N-syndecan. J Biol Chem 271:13844–13853

    Article  CAS  PubMed  Google Scholar 

  72. Chernousov MA, Rothblum K, Tyler WA, Stahl RC, Carey DJ (2000) Schwann cells synthesize type V collagen that contains a novel alpha 4 chain. Molecular cloning, biochemical characterization, and high affinity heparin binding of alpha 4(V) collagen. J Biol Chem 275:28208–28215

    CAS  PubMed  Google Scholar 

  73. Melendez-Vasquez C, Carey DJ, Zanazzi G, Reizes O, Maurel P, Salzer JL (2005) Differential expression of proteoglycans at central and peripheral nodes of Ranvier. Glia 52:301–308

    Article  PubMed  Google Scholar 

  74. Imamura Y, Scott IC, Greenspan DS (2008) The pro-alpha3(V) collagen chain. Complete primary structure, expression domains in adult and developing tissues, and comparison to the structures and expression domains of the other types V and XI procollagen chains. J Biol Chem 275:8749–8759

    Article  Google Scholar 

  75. Bernardi P, Bonaldo P (2008) Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann N Y Acad Sci 1147:303–311

    Article  CAS  PubMed  Google Scholar 

  76. Cheng JS, Dubal DB, Kim DH, Legleiter J, Cheng IH, Yu GQ, Tesseur I, Wyss-Coray T, Bonaldo P, Mucke L (2009) Collagen VI protects neurons against Abeta toxicity. Nat Neurosci 12:119–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allen JM, Zamurs L, Brachvogel B, Schlotzer-Schrehardt U, Hansen U, Lamande SR, Rowley L, Fitzgerald J, Bateman JF (2009) Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function. J Biol Chem 284:12020–12030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen P, Cescon M, Bonaldo P (2013) Collagen VI in cancer and its biological mechanisms. Trends Mol Med 19:410–417

    Article  CAS  PubMed  Google Scholar 

  79. Fitzgerald J, Rich C, Zhou FH, Hansen U (2008) Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 283:20170–20180

    Article  CAS  PubMed  Google Scholar 

  80. Gara SK, Grumati P, Urciuolo A, Bonaldo P, Kobbe B, Koch M, Paulsson M, Wagener R (2008) Three novel collagen VI chains with high homology to the alpha3 chain. J Biol Chem 283:10658–10670

    Article  CAS  PubMed  Google Scholar 

  81. Aigner T, Hambach L, Soder S, Schlotzer-Schrehardt U, Poschl E (2002) The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem Biophys Res Commun 290:743–748

    Article  CAS  PubMed  Google Scholar 

  82. Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J (1983) Electron-microscopical approach to a structural model of intima collagen. Biochem J 211:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, Vozzi G, Rando TA, Bonaldo P (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4:1964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Alexopoulos LG, Youn I, Bonaldo P, Guilak F (2009) Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum 60:771–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML, Birk DE (2011) Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol 30:53–61

    Article  CAS  PubMed  Google Scholar 

  86. Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  CAS  PubMed  Google Scholar 

  87. Cheng IH, Lin YC, Hwang E, Huang HT, Chang WH, Liu YL, Chao CY (2011) Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/phosphatidylinositol 3-kinase signaling pathway. Neuroscience 183:178–188

    Article  CAS  PubMed  Google Scholar 

  88. Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF III, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115:1163–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 122:4243–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marvulli D, Volpin D, Bressan GM (1996) Spatial and temporal changes of type VI collagen expression during mouse development. Dev Dyn 206:447–454

    Article  CAS  PubMed  Google Scholar 

  91. Vitale P, Braghetta P, Volpin D, Bonaldo P, Bressan GM (2001) Mechanisms of transcriptional activation of the col6a1 gene during Schwann cell differentiation. Mech Dev 102:145–156

    Article  CAS  PubMed  Google Scholar 

  92. Braghetta P. Fabbro C. Piccolo S. Marvulli D. Bonaldo P. Volpin D. Bressan GM (1996) Distinct regions control transcriptional activation of the alpha1(VI) collagen promoter in different tissues of transgenic mice. J Cell Biol 135:1163–1177.

  93. Bonaldo P, Braghetta P, Zanetti M, Piccolo S, Volpin D, Bressan GM (1998) Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum Mol Genet 7:2135–2140

    Article  CAS  PubMed  Google Scholar 

  94. Grove M, Komiyama NH, Nave KA, Grant SG, Sherman DL, Brophy PJ (2007) FAK is required for axonal sorting by Schwann cells. J Cell Biol 176:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Triolo D, Dina G, Taveggia C, Vaccari I, Porrello E, Rivellini C, Domi T, La MR, Cerri F, Bolino A, Quattrini A, Previtali SC (2012) Vimentin regulates peripheral nerve myelination. Development 139:1359–1367

    Article  CAS  PubMed  Google Scholar 

  96. La MR, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Blobel CP, Quattrini A, Salzer JL, Taveggia C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857–865

    Article  CAS  Google Scholar 

  97. Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, Landreth GE, Snider WD (2011) Specific functions for ERK/MAPK signaling during PNS development. Neuron 69:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hossain S, Fragoso G, Mushynski WE, Almazan G (2010) Regulation of peripheral myelination by Src-like kinases. Exp Neurol 226:47–57

    Article  CAS  PubMed  Google Scholar 

  99. Fragoso G, Robertson J, Athlan E, Tam E, Almazan G, Mushynski WE (2003) Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 183:34–46

    Article  CAS  PubMed  Google Scholar 

  100. Haines JD, Fragoso G, Hossain S, Mushynski WE, Almazan G (2008) p38 Mitogen-activated protein kinase regulates myelination. J Mol Neurosci 35:23–33

    Article  CAS  PubMed  Google Scholar 

  101. Parkinson DB, Bhaskaran A, rthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181:625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V, Baumann R, Relvas JB, Suter U, Tricaud N (2010) Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–1418

    Article  CAS  PubMed  Google Scholar 

  103. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 4:e7754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Giese KP, Martini R, Lemke G, Soriano P, Schachner M (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–576

    Article  CAS  PubMed  Google Scholar 

  105. Li D, Clark CC, Myers JC (2000) Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultured cells. J Biol Chem 275:22339–22347

    Article  CAS  PubMed  Google Scholar 

  106. Myers JC, Kivirikko S, Gordon MK, Dion AS, Pihlajaniemi T (1992) Identification of a previously unknown human collagen chain, alpha 1(XV), characterized by extensive interruptions in the triple-helical region. Proc Natl Acad Sci U S A 89:10144–10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kivirikko S, Heinamaki P, Rehn M, Honkanen N, Myers JC, Pihlajaniemi T (1994) Primary structure of the alpha 1 chain of human type XV collagen and exon-intron organization in the 3′ region of the corresponding gene. J Biol Chem 269:4773–4779

    CAS  PubMed  Google Scholar 

  108. Rehn M, Hintikka E, Pihlajaniemi T (1994) Primary structure of the alpha 1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the alpha 1(XVIII) chain with its homologue, the alpha 1(XV) collagen chain. J Biol Chem 269:13929–13935

    CAS  PubMed  Google Scholar 

  109. Rehn M, Pihlajaniemi T (1994) Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci U S A 91:4234–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clementz AG, Harris A (2013) Collagen XV: exploring its structure and role within the tumor microenvironment. Mol Cancer Res 11:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  112. Ramchandran R, Dhanabal M, Volk R, Waterman MJ, Segal M, Lu H, Knebelmann B, Sukhatme VP (1999) Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255:735–739

    Article  CAS  PubMed  Google Scholar 

  113. Sasaki T, Larsson H, Tisi D, Claesson-Welsh L, Hohenester E, Timpl R (2000) Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol 301:1179–1190

    Article  CAS  PubMed  Google Scholar 

  114. Muona A, Eklund L, Vaisanen T, Pihlajaniemi T (2002) Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(−/−) mice. Matrix Biol 21:89–102

    Article  CAS  PubMed  Google Scholar 

  115. Rasi K, Hurskainen M, Kallio M, Staven S, Sormunen R, Heape AM, Avila RL, Kirschner D, Muona A, Tolonen U, Tanila H, Huhtala P, Soininen R, Pihlajaniemi T (2010) Lack of collagen XV impairs peripheral nerve maturation and, when combined with laminin-411 deficiency, leads to basement membrane abnormalities and sensorimotor dysfunction. J Neurosci 30:14490–14501

    Article  CAS  PubMed  Google Scholar 

  116. Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lannergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Cullheim S (2005) Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 25:3692–3700

    Article  CAS  PubMed  Google Scholar 

  117. Yang D, Bierman J, Tarumi YS, Zhong YP, Rangwala R, Proctor TM, Miyagoe-Suzuki Y, Takeda S, Miner JH, Sherman LS, Gold BG, Patton BL (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. D’Antonio M, Michalovich D, Paterson M, Droggiti A, Woodhoo A, Mirsky R, Jessen KR (2006) Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia 53:501–515

    Article  PubMed  Google Scholar 

  119. Ring C, Hassell J, Halfter W (1996) Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev Biol 180:41–53

    Article  CAS  PubMed  Google Scholar 

  120. Ring C, Lemmon V, Halfter W (1995) Two chondroitin sulfate proteoglycans differentially expressed in the developing chick visual system. Dev Biol 168:11–27

    Article  CAS  PubMed  Google Scholar 

  121. Sund M, Vaisanen T, Kaukinen S, Ilves M, Tu H, utio-Harmainen H, Rauvala H, Pihlajaniemi T (2001) Distinct expression of type XIII collagen in neuronal structures and other tissues during mouse development. Matrix Biol 20:215–231

    Article  CAS  PubMed  Google Scholar 

  122. Hubert T, Grimal S, Ratzinger S, Mechaly I, Grassel S, Fichard-Carroll A (2007) Collagen XVI is a neural component of the developing and regenerating dorsal root ganglia extracellular matrix. Matrix Biol 26:206–210

    Article  CAS  PubMed  Google Scholar 

  123. Grimal S, Puech S, Wagener R, Venteo S, Carroll P, Fichard-Carroll A (2010) Collagen XXVIII is a distinctive component of the peripheral nervous system nodes of ranvier and surrounds nonmyelinating glial cells. Glia 58:1977–1987

    Article  PubMed  Google Scholar 

  124. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27:265–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to the authors whose papers could not be cited because of the limitation of space. This work was supported by the Italian Ministry of Education, University and Research (FIRB Strategic Project RBAP11Z3YA_003), the Cariparo Foundation, and the University of Padova.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiwen Chen or Paolo Bonaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Cescon, M. & Bonaldo, P. The Role of Collagens in Peripheral Nerve Myelination and Function. Mol Neurobiol 52, 216–225 (2015). https://doi.org/10.1007/s12035-014-8862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8862-y

Keywords

Navigation