Skip to main content

Advertisement

Log in

Sulbactam Plays Neuronal Protective Effect Against Brain Ischemia via Upregulating GLT1 in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The study was undertaken to investigate whether sulbactam protects cerebral neurons against ischemia and whether the protection is mediated by regulating the expression and uptake activity of glial glutamate transporter-1 (GLT1) in a rat global brain ischemia model. The CA1 hippocampus was selected as the observing target. Real time quantitative PCR, Western blot and immunohistochemistry assays were used to detect GLT1 expression. Neuropathological evaluation was performed after thionin staining to determine the extent of the delayed neuronal death (DND) of pyramidal neurons. It was found that cerebral ischemia for 8 min induced obvious DND of pyramidal neurons and GLT1 downregulation. Sulbactam pretreatment significantly upregulated GLT1 expression in sham rats and prevented or reversed the GLT1 downregulation normally induced in the ischemic rat brain. Meanwhile, sulbactam pretreatment effectively prevented the DND of pyramidal neurons normally induced by brain ischemia in a dose-dependent manner. Sulbactam posttreatment also protected pyramidal neurons against DND induced by brain ischemia although the magnitude of the protective effect was weaker than that in sulbactam pretreatment. Furthermore, either antisense knockdown of GLT1 expression or inhibition of the GLT1 uptake activity with dihydrokainate, a selective inhibitor of GLT1, significantly blocked the neuronal protective effect of sulbactam. These findings indicate that sulbactam has a neuronal protective effect though upregulating GLT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lo EH, Moskowitz MA, Jacobs TP (2005) Exciting, radical, suicidal: how brain cells die after stroke. Stroke 36(2):189–192. doi:10.1161/01.STR.0000153069.96296.fd

    Article  PubMed  Google Scholar 

  2. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  3. Alexander SP, Mathie A, Peters JA (2011) Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol 164(Suppl 1):S1–S324. doi:10.1111/j.1476-5381.2011.01649_1.x

    Article  CAS  PubMed  Google Scholar 

  4. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94(8):4155–4160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603. doi:10.1038/375599a0

    Article  CAS  PubMed  Google Scholar 

  6. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89(22):10955–10959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360(6403):464–467. doi:10.1038/360464a0

    Article  CAS  PubMed  Google Scholar 

  8. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. doi:10.1038/360467a0

    Article  CAS  PubMed  Google Scholar 

  9. Yeh TH, Hwang HM, Chen JJ, Wu T, Li AH, Wang HL (2005) Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol Dis 18(3):476–483. doi:10.1016/j.nbd.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    Article  CAS  PubMed  Google Scholar 

  11. Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21(6):1876–1883

    CAS  PubMed  Google Scholar 

  12. Zhang M, Li WB, Geng JX, Li QJ, Sun XC, Xian XH, Qi J, Li SQ (2007) The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J Cereb Blood Flow Metab 27(7):1352–1368. doi:10.1038/sj.jcbfm.9600441

    Article  CAS  PubMed  Google Scholar 

  13. Geng JX, Cai JS, Zhang M, Li SQ, Sun XC, Xian XH, Hu YY, Li WB, Li QJ (2008) Antisense oligodeoxynucleotides of glial glutamate transporter-1 inhibits the neuro-protection of cerebral ischemic preconditioning in rats. Sheng Li Xue Bao 60(4):497–503

    CAS  PubMed  Google Scholar 

  14. Liu YX, Zhang M, Liu LZ, Cui X, Hu YY, Li WB (2012) The role of glutamate transporter-1a in the induction of brain ischemic tolerance in rats. Glia 60(1):112–124. doi:10.1002/glia.21252

    Article  PubMed  Google Scholar 

  15. Liu AJ, Hu YY, Li WB, Xu J, Zhang M (2011) Cerebral ischemic pre-conditioning enhances the binding characteristics and glutamate uptake of glial glutamate transporter-1 in hippocampal CA1 subfield of rats. J Neurochem 119(1):202–209. doi:10.1111/j.1471-4159.2011.07396.x

    Article  CAS  PubMed  Google Scholar 

  16. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, Kim SJ, Park DK, Jung KH, Song EC, Lee SK, Kim M, Roh JK (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38(1):177–182. doi:10.1161/01.STR.0000252091.36912.65

    Article  CAS  PubMed  Google Scholar 

  17. Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, Shen H, Gerhardt G, Hoffer BJ, Wang Y (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6(8):e22135. doi:10.1371/journal.pone.0022135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77. doi:10.1038/nature03180

    Article  CAS  PubMed  Google Scholar 

  19. Thone-Reineke C, Neumann C, Namsolleck P, Schmerbach K, Krikov M, Schefe JH, Lucht K, Hortnagl H, Godes M, Muller S, Rumschussel K, Funke-Kaiser H, Villringer A, Steckelings UM, Unger T (2008) The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens 26(12):2426–2435. doi:10.1097/HJH.0b013e328313e403

    Article  PubMed  Google Scholar 

  20. Livermore DM (1993) Determinants of the activity of beta-lactamase inhibitor combinations. J Antimicrob Chemother 31(Suppl A):9–21

    Article  CAS  PubMed  Google Scholar 

  21. Frere JM (1989) Quantitative relationship between sensitivity to beta-lactam antibiotics and beta-lactamase production in gram-negative bacteria–I. Steady-state treatment. Biochem Pharmacol 38(9):1415–1426

    Article  CAS  PubMed  Google Scholar 

  22. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10(3):267–272

    Article  CAS  PubMed  Google Scholar 

  23. Uchino H, Suzuki M, Okita A, Yuhnaiyama Y, Shibuya M, Usui D, Miyashita R, Hatakeyama K (2012) Organ protective effects of volatile anesthetics and perioperative outcomes. Masui 61(5):478–495

    PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Ganel R, Ho T, Maragakis NJ, Jackson M, Steiner JP, Rothstein JD (2006) Selective up-regulation of the glial Na+−dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol Dis 21(3):556–567. doi:10.1016/j.nbd.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  26. Bruhn T, Levy LM, Nielsen M, Christensen T, Johansen FF, Diemer NH (2000) Ischemia induced changes in expression of the astrocyte glutamate transporter GLT1 in hippocampus of the rat. Neurochem Int 37(2–3):277–285

    Article  CAS  PubMed  Google Scholar 

  27. Torp R, Lekieffre D, Levy LM, Haug FM, Danbolt NC, Meldrum BS, Ottersen OP (1995) Reduced postischemic expression of a glial glutamate transporter, GLT1, in the rat hippocampus. Exp Brain Res 103(1):51–58

    Article  CAS  PubMed  Google Scholar 

  28. Jackman K, Kahles T, Lane D, Garcia-Bonilla L, Abe T, Capone C, Hochrainer K, Voss H, Zhou P, Ding A, Anrather J, Iadecola C (2013) Progranulin deficiency promotes post-ischemic blood-brain barrier disruption. J Neurosci 33(50):19579–19589. doi:10.1523/JNEUROSCI.4318-13.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, Li Q, Li L (2010) An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain 148(2):284–301. doi:10.1016/j. Pain. 2009.11.014

    Article  CAS  PubMed  Google Scholar 

  30. Inui T, Alessandri B, Heimann A, Nishimura F, Frauenknecht K, Sommer C, Kempski O (2013) Neuroprotective effect of ceftriaxone on the penumbra in a rat venous ischemia model. Neuroscience 242:1–10. doi:10.1016/j.neuroscience.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  31. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A (2013) Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter GLT-1, reduces regional gliosis, and reduces posttraumatic seizures in the rat. J Neurotrauma. doi:10.1089/neu.2012.2712

    PubMed Central  PubMed  Google Scholar 

  32. Liu CH, Jiao H, Guo ZH, Peng Y, Wang WZ (2013) Up-regulated GLT-1 resists glutamate toxicity and attenuates glutamate-induced calcium loading in cultured neurocytes. Basic Clin Pharmacol Toxicol 112(1):19–24. doi:10.1111/bcpt.12011

    Article  CAS  PubMed  Google Scholar 

  33. Tamahara S, Inaba M, Sato K, Matsuki N, Hikasa Y, Ono K (2002) Non-essential roles of cysteine residues in functional expression and redox regulatory pathways for canine glutamate/aspartate transporter based on mutagenic analysis. Biochem J 367(Pt 1):107–111. doi:10.1042/BJ20011843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following foundations: (1) National Natural Science Foundation of China (No: 81271454, No: 31271149, No: 81000477 and No: 31100781); (2) Key Basic Research Project in Application Plan of Hebei Province, P.R. China (No: 11966121D); and (3) Special Foundation for Doctoral Education in University from Ministry of Education, PR China (No: 20111323110005).

Conflict of Interest

No author has a conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

(DOC 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Li, L., Hu, YY. et al. Sulbactam Plays Neuronal Protective Effect Against Brain Ischemia via Upregulating GLT1 in Rats. Mol Neurobiol 51, 1322–1333 (2015). https://doi.org/10.1007/s12035-014-8809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8809-3

Keywords

Navigation